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Abstract— Small objects on the road can become hazardous
obstacles when driving at high speed. Detecting such obstacles is
vital to guaranty the safety of self-driving car users, especially
on highways. Such tasks cannot be performed using existing
active sensors such as radar or LIDAR due to their limited
range and resolution at long distances. In this paper we propose
a technique to detect anomalous patches on the road from color
images using a Restricted Boltzman Machine neural network
specifically trained to reconstruct the appearance of the road.
The differences between the observed and reconstructed road
patches yield a more relevant segmentation of anomalies than
classic image processing techniques. We evaluated our tech-
nique on texture-based synthetic datasets as well as on real
video footage of anomalous objects on highways.

I. INTRODUCTION

Autonomous driving research has made tremendous

progress since the initial DARPA Grand Challenges in 2004,

2005 and 2007. As a matter of fact, most of the investigations

in this domain have followed the premises of the DARPA

initial challenges: To navigate at moderate speed in very

challenging environments such as urban settings [1] or desert

mountain trails [2]. The sensors used for perception are

usually matched to such tasks and often include radar,

LIDAR, or stereo as well as standard wide-angle monocular

2D cameras. While safe autonomous driving at low or

medium speeds downtown is challenging, the technology

developed for this task may not always suit high-speed

driving scenarios. The main reasons for this difference are

the sensors’ range and accuracy. In short, the sensor range of

the vehicle is directly linked to how far in the future it can

predict and avoid events such as collisions. At high speed

the car must be aware of obstacles at greater distances. For

example, for a maximal safe deceleration of 0.8 g, at a speed

of 150 km/h, a car would need at least 110 meters to come

to a full stop, setting aside the latency for perception and

decision processes.

Distant obstacle detection is possible for large objects

(such as cars and trucks) using either radar or 2D vehicle

appearance detection systems (such as HoG detectors) but

it hasn’t been done for small unknown and unpredictable

obstacles. There are two main reasons for this: First, of-

the-shelf active sensors cannot be used with high accuracy

over long distances. For example, a LIDAR system such as

the Velodyne HDL-64E [3] has a vertical angular resolution

of about 0.4◦. This means that the maximum distance at

which it can detect 3 consecutive points on a small 20-cm

vertical object is less than 15 meters. Second, class-specific

1 Researchers at IBM Research Tokyo, Tokyo Research Lab, Toyosu,
Japan {clement,asim}@jp.ibm.com

object detection systems are bound to fail in detecting new

types of objects. While some obstacles are more common

than others (for example burst tire debris), it is impossible

to predict exactly what might fall from a truck or a car onto

the road. A class specific machine-learning-based detector

works well for cars and pedestrians detection, since the

whole class appearance is relatively compact. This will not

work for random objects which have no predetermined shape

or appearance.

Based on these two observations we decided to investigate

the problem from the standpoint of a single class learning

task. What we want to do is to detect the dual of the road, i.e.

anything on the road that is not the road. In this paper we

present a technique for road patch appearance reconstruc-

tion using a Autoencoding Neural Network, specifically a

compressive Restricted Boltzmann Machine (RBM) trained

exclusively to reconstruct the road. We show early evidence

that such an approach can be more efficient than classic

segmentation techniques for candidate obstacle detection.

Our main contribution is to investigate an uncharted type

of technique for anomalous object detection on a learnable

textured background. To the best of our knowledge, this is

the first time such an idea is being applied to object detection.

In the next sections, we will discuss previous work in this

area, introduce our method, and evaluate it on both synthetic

and real data. The last section will focus on analyzing its

limitations and the advantages of the method, and we will

propose interesting future directions.

II. PREVIOUS WORK

While the literature on pedestrian and car detector is

prolific (please refer to [4] and [5] for respective reviews),

there has been very little work on unknown anomalous

distant object detection on the road. This is quite natural

since the focus of autonomous driving has been on Low

and Moderate Speed Driving (LSD, MSD) rather than High

Speed Driving (HSD). In the LDS and MSD cases, active

range sensors are often sufficient for obstacle detection.

Early work in the field of obstacle detection in highway

environments heavily relies on stereo vision. J.A. Hancock

1997 [6] makes use of laser reflectance and stereo vision

to detect road debris at long distances. T. William et al. [7]

uses a multi-baseline stereo technique. The paper claims to

detect 14-cm obstacles at a distance of over 100 m. Even

the research in recent years uses stereo or Structure-From-

Motion (SFM) for solving the problem. H. Kyutoku et al.

2011 [8] compares the previous and the current frame of a

video to find any anomalies on the road. Subaru Eyesight TM
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[9] is one of the commercial stereo-vision-based systems that

detects large obstacles robustly. Although, such techniques

could in theory detect any obstacle on the road, in practice,

these techniques require a very clean road environment with

accurate point matching for image warping and disparity

computations. This is not practical for point matching since

the real world images can be very noisy and the road may

have relatively few but repeating features. Also, vehicle

vibrations make camera calibration with long focal length

very difficult as the two cameras shows independent motion

in such situation.

Over the last decade, many researchers have tried to

solve this problem using machine learning systems. Mobileye

[10] is a commercially available system that detects large

obstacles at small distances quite robustly by using only a

monocular camera. However, this system can only recognize

certain classes of objects such as vehicles or pedestrians. D.

Forslund et al. 2014 [11] used far infrared (FIR) to find ROI

on night’s road scenes and then use boosting approach with

sliding widows at multiple image scales to classify patches

as animals or not. The technique uses very specific features

to train the system and will therefore fail to detect unknown

shapes or inanimate cold anomalies on the road.

Another major hurdle in using machine learning tech-

niques to solve our problem is the absence of a comprehen-

sive dataset. Commonly used datasets for vehicle detection

[12], pedestrian detection [13] or scene object classification

[14] are not sufficient for anomaly detection on the road.

Most of the datasets give ground truth bounding boxes for

objects of interest on the road. These datasets are meant

to learn object features and classify them. In contrast, an

anomaly cannot be learned and therefore, the road itself must

be analyzed to find the road and non-road patches. For a

dataset to be useful for this kind of task we would expect

labels for the road surface and other features such as lane

markings, cat’s eyes reflectors and so on. The short focal

length and low resolution of existing datasets also inhibit

the situation for HSD.

III. METHOD

In this section we describe our anomaly detection system

in detail. Please note that we focus here on the detection

of anomalies, not the evaluation of their threat level or the

decision making and actuations required to avoid them. At

this stage we do not distinguish between a harmless plastic

bag and dangerous solid debris. Our primary objective is

to detect small non-road element on the road for further

processing.

The inputs to our system are simple 2D color images of a

road. Our approach has two main stages. In the first stage we

try to generate a heat map that represent the likelihood of a

patch being part of the road. For visualization we represent

the heat map as a normalized grayscale image from white

(road pixels) to black (non-road pixels). In the second stage,

we use this map to perform a segmentation of potential

obstacles. Our main focus is on stage 1 in this paper.

Input Normalized Error Heat-Map

∆

RBM Reconstruction Post-Processing

Trained RBM
Autoencoder

Reconstructed Segmented Anomalies

Fig. 1. Workflow of our anomaly detector. Please note that our technique
can be used for many visual anomaly detection task on learnable textured
background. Here we illustrate with an anomaly detection experiment on
sea images. (Please zoom in for more details. The pictures in the second
column are white balanced for display only.)

For the reconstruction task, several machine learning tech-

niques could be used to learn road appearances. In this

paper we use an RBM as an autoencoder for the input

image layer. We explain the reason for this choice later

in the paper. At this stage our goal is not to recommend

a particular learning technique but to assess whether the

global approach of detection by reconstruction make sense

for practical applications and whether the road texture data

can be learned.

A. Preprocessing

Our approach has an offline training part and an online

part. Both are preceded by a pre-processing stage where

the large input image is cut into small square patches of

dimension P ×P which are converted to float vectors, mean

centered and normalized. In most of the experiments in this

paper we use P = 8 with a stride S = 6. The sampling

parameters have some effects on the smoothness of the

resulting map as well as on the speed at which the system

can run. Refer to section IV-E for further details.

B. Offline Training

For the training stage we prepared patches cut from a long

YouTube video of a Japanese highway ([15]). We manually

defined a selection mask for the video so that only patches

near the center of the road area were selected for training (see

Figure 2) This data was fed to a Gaussian binary Restricted

Boltzmann Machine (RBM) with an input layer of size

Lvis = P × P × 3 and hidden layers of size H . We set

H to be relatively small for a compressed representation of

the input. In our experiments, H is set to 20. The RBM is

trained using Stochastic Gradient Descent. The cost function

is the mean squared reconstruction error of the patch given

random Gaussian corruption of the input as in [16]. The

trained weights of the RBM are stored for use in the online

part:

RBMmodel = (W, bhid, bvis) (1)
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where W is the unit weights matrix and bhid and bvis are

the hidden and visible biases vectors respectively.

Lets call x′
i the reconstruction vector:

x′
i = Sigmoid(xi ·W + bhid) ·W

T + bvis (2)

The objective of the training is determine (W, bhid, bvis)
that satisfy:

argmin
W,bhid,bvis

∑

i

(x′
i − xi)

2 (3)

Here is our basic idea. If the RBM has been trained on

a single positive class of patches xi ∈ A, then the error

should be smaller for patches belonging to that class than

for random patches x̄i ∈ ¬A, i.e.:

ǫxi
< ǫx̄i

(4)

where ǫ is the reconstruction error. By looking at these values

we can identify which patches were the least expected, i.e.

the most anomalous.

The training is imperfect and presents many clutters.

However these elements are a minority and since the system

cannot learn much (due to its compressive nature) it can only

learn things that are quite generic to the whole set (ideally

a model of what a road patch is).

We choose an RBM model over other modern machine

learning approaches because of its simplicity, popularity, ease

of implementation but mainly because the online part can

be executed quite fast without any hardware acceleration,

making it a good candidate for real-time applications.

It is important to understand that having a too adaptive

reconstruction method here would defeat our purpose. An

adaptive system would be able to generalize well to new

types of data. Hence, we intentionally want the system to

be limited enough not to reconstruct anything besides road

patches.

C. Online pipeline

In the online part the process follows the workflow

presented in Figure 1. For visualization, we reconstructed

the image from the computed patches at each stage of the

process. Example of such pictures for road images are shown

in Figure 6.

The previously unseen image is preprocessed into nor-

malized patches that are row vectorized. Each patch xi is

autoencoded into the reconstructed patch x′
i (Equation 2).The

error heat map is computed by taking the absolute differences

between the input and reconstructed images.

∆xi
= |x′

i − xi| (5)

The heat map based on these pixel differences can be used

directly in the next stage. However reconstructing the full

image from patches is computationally expensive. A faster

solution is to consider only the mean of the pixel errors

in each patch and remap these values to a two-dimensional

image:

ǫxi
=

∑

0≤k<Lvis

∆xi,k (6)

This introduces a size reduction of the heat map similar to

using a uniform convolution of size P × P . In practice, the

blurring effect introduced by this down-sampling does not

significantly impact the detection of anomalies, since the

target objects are larger than the patch size.

The post-processing steps are performed on the inverted

reconstructed heat map (not the patches). The inversion is

mainly used to help the visualization so that the obstacles

appear black on a white background. First, we remap the

intensity level of [0,mean] to [0, 1] so as to saturate as white

the areas with insignificant reconstruction errors. The second

step is to get a final segmentation from the heat map. Many

techniques can be used for such task whether pixel-wise or

context based. To avoid misunderstandings we do not use

the final segmentation step in this paper and focus on the

evaluation of our main contribution: the reconstruction error

heat map.

For our visualization purposes the error ∆ is shown as an

average image and remapped to a 0-255 range. This is an

imperfect representation of the underlying data. In addition,

we usually show the heat map for the entire image. In

practice the reconstruction would only be generated for the

known road regions to save computational resources.

D. Training Data

Training data is an essential part of any machine learning

approach. In order to learn the road appearance we used an

online YouTube video [15]. It consists of a 1 h 40 m sequence

of highway in Japan recorded from a car dashboard with a

Panasonic GH4 camera at 4K resolution (3840× 2160). We

first temporally down-sampled the video to keep only one

frame every 2 seconds (3054 frames) and resize by a factor

of 0.5. We then selected a fix mask of 500 × 500 in the

center road area. Each selected frame region is decomposed

in squared 50×50 images with a stride of 25 producing 144

samples per frame. In the training phase these samples are

randomly sampled for smaller patches of size P × P given

the parameters of the experiment.

180.000 × 3840 × 2160 3054 × 500 × 500 439776 × 50 × 50

Fig. 2. The training samples are extracted from the video [15].

IV. EVALUATION

To evaluate our approach we first examine the quality of

the reconstruction error heat map for classification tasks on

small image patches. We then look at real video examples

presenting anomalies to get a qualitative measure of the

strength and limitations of our system.

A. Testing Data

For the testing data we use two different sources. First,

some high resolution videos found on the Internet showing
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obstacles on highways [17][18]. Second, video we recorded

ourselves in conditions similar to [15] (4K resolution,

Japanese highways). However while [15] used a relatively

wide angle 12-35 mm lens, we used lenses between 70 mm

and 150 mm. We used high resolution with powerful zoom

to be able to detect distant objects on the road. The video

capture system is shown in Figure 3. Unfortunately most

of the data did not contain any significant anomalies. In

4 hours and 33 minutes of recording we encountered only

one instance of a noticeable anomalous object for around 5

second as seen in the supplemental video and Figure 3-c. To

compensate for the lack of test data, we downloaded high

resolution video from YouTube such as [17], [19] and [18].

We also created synthetic data by alpha mating random

object images on top of highway background patches (see

Figure 4).

a- 4K capture b- 2K crop (our input ROI)

(f ≈ 70mm, αv ≈ 20◦) (αv ≈ 10◦)

c- Zooming in on an anomaly d- Data Acquisition

(αv ≈ 2◦) Panasonic DMC-GH4

Fig. 3. Details of a single frame presenting an anomaly (a,b,c) and
recording setup (d)

B. Quantitative Analysis

Our main interest was to see how well the compressive

RBM approach can reconstruct the road while not recon-

structing non-road patches. Because there are currently no

directly comparable state-of-art methods to compare with,

we evaluated the main output of our method with RGB input

data using standard classification techniques such as Linear

Discriminant Analysis (LDA) and Support Vector Machine

(SVM). For each experiment, we used exactly the same

baseline techniques with different input vectors computed

from the same corresponding data. By doing this we were

able to measure whether the distribution of our output is a

better indicator of the labels (road vs non-road) than the raw

input images. To measure this we use small image patches

following the CIFAR layout (32x32 RGB patches). The

positive class is composed of images containing plain roads

(ROAD-RGB) sampled from manually labelled images. One

negative class is composed of the actual CIFAR10 public

dataset as a source of random non-road elements (CIFAR-

RGB). Another negative class is composed of road patches

(independent of the training) on which synthetic objects have

been alpha-mated (OBS-RGB) (see Figure 4).

For these three datasets we computed the respective

datasets of ∆ error vectors from Equation 5 using our trained

RBM: ROAD-∆, CIFAR-∆, and OBS-∆. All of the datasets

are split into a training and testing part of sizes 2.000 and

2.000. Each experiment involved two datasets (one positive

and one negative class), we therefore used 4.000 samples for

training and 4.000 samples for testing.

For both of our experiments we compared classification

results using a linear SVM and an LDA technique. In Ex-

periment 1 we compared the results obtained for ROAD vs.

CIFAR. In Experiment 2 we compared the results obtained

for ROAD vs. OBS. We show the classification results as

standard Receiver Operating Characteristic (ROC) curves in

Figure 5. Using the output of our system gives consistently

better results than using the standard RGB image represen-

tation. The Area Under Curve (ROC-AUC) metric is always

larger for our inputs. This means that the labels road/non-

road are more linearly separable from the ∆ error map than

from the normal input images.

Please note that while x′
i can be encoded using only 20

values (the size of the hidden layer), ∆ = |x′
i − xi| also

depends on the input and doesn’t have a straightforward

compressed representation. It is therefore difficult to measure

the compression ratio of the overall representation relative to

an RGB image.

Exp. 1 (ROAD vs. CIFAR)
CIFAR ROAD OBS

(-) (+) (-)

Exp. 2 (ROAD vs. OBS)

Fig. 4. Dataset patch RGB examples for the two quantitative experiments.

LDA Results SVM Results

Fig. 5. ROC curves for experiment 1 and 2. Left graph shows the LDA
results while right graph show SVM results.

C. Qualitative Results

We tested our system on full size videos not related to the

training data. The lighting, roads, recording settings, camera

positions, resolutions, and so on were different. This is a

very challenging test for any system.
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What we want to demonstrate here is that the compressed

representation of the road texture learned by the system is

generic enough to be used for new and previously unseen

roads. You can see examples of such detection in Figures 6

and 7.

Empirical observations of the reconstruction experiments

on real images lead us to several conclusions. The system

learns to some extent the color of the road. Colors that

are unlikely to be seen on the road yield higher errors

in general. This is independent of the amount of blur. As

a rule, uniform patches yield smaller errors, while highy

textured images produce larger errors. Edges generate the

largest errors. However, different type of edges are not

treated equally. The edges of shadows often seen on the

road have smaller reconstruction errors than the edges of

objects, as seen in Figure 7. A human-designed system

would have to incorporate different rules for different cases,

which seems unlikely to work in the long run in real life

scenarios. Our data-driven approach to road reconstruction,

although preliminary, appears much more robust by nature

than human-designed approaches for anomaly detections.

D. Limitations

One obvious limitation of our approach is that by not

having a negative training class the boundaries of the positive

class remain stuck to the outer shell of the road samples

in the feature space. In other words, the system can only

generalize unseen patches that lie within the training mani-

fold. This limitation is clear in figure 8. This scene from a

YouTube video was filmed at dusk and the whole scene is

immersed in the distinctive reddish lighting of dusk. Such

lighting did not appear in the training video. Therefore all

those slightly redder road patches are discarded as being

non-road patches. However the road patches that lies in the

shadows of the car and the bridge do not reflect this red light

and are correctly reconstructed.

To solve this kind of problem our system should learn

all of the possible road appearances. This works well for

highways that have clean and uniform appearances but might

be more difficult on messier road data. A complementary

approach would be to use the within frame (or within

video segment) road appearance to detect the anomalies.

Indeed, while the roads appearance might vary widely, its

texture remains locally self-similar within a frame or a short

sequence of frames.

Fig. 8. Example of failure on video [19] due to an insufficient training
coverage. Dusk lighting has never been seen during training. All road
patches under the reddish sunlight are misclassified while road patches in
the shadows are properly reconstructed.

TABLE I

COMPUTATION TIME PER MODULE (IN SECOND PER FRAME)

Full images Masked images

VGA WSGA HD FHD HD FHD

Resolution 600x480 1024x600 1360x768 1920x1080 1360x768 1920x1080

#Patch 7821 16830 28702 57101 5325 10829

Patch Extraction .044 .096 .165 .350 .031 .063
Normalization .031 .067 .132 .264 .021 .045
Reconstruction .059 .129 .229 .456 .040 .082

Error Map .014 .030 .063 .124 .009 .018

Total .149 .323 .591 1.195 .103 .210

Another limitation concerns uniform non-textured sur-

faces. These surfaces are so simple that they can be easily

reconstructed by the system even if they have never been

seen before. This leads to low reconstruction errors in flat

uniform areas, for example in the sky.

E. Speed

In our online process pipeline, the most computationally

expensive parts are to cut patches within the input image

and run the RBM reconstruction. For a fixed resolution, the

speed of our system is more or less linear with the number

of patches used per image. A higher number of patches

(increased overlap) leads to a smoother error heat map but

slower computation.

Our RBM was trained using the pylearn2 Framework [20]

in python. The computation time for each of our modules is

given in Table I. Time are given for a single Intel i7 CPU

core at 3.33 GHz, the values are given in second per image

and are averaged over 300 images. In the two last columns,

we assume that the system knows the road position within

the image. In that case we use the binary mask of the road

to restrict the sampling of patches. This mask cover 20% of

the images in average. With mask selection and without any

harware acceleration, the system runs at almost 10 fps for a

HD resolution input.

V. CONCLUSION

We have presented a new approach for obstacle detection

based on reconstruction of road patches using a compressive

RBM. While still at a early stage, we show that the approach

has great potential to detect anomalous artifacts on the road.

It is also more elegant than many other techniques, since it

is driven by the data rather than by man-made sequential

recipes.

While anomaly detection is required for obstacle detection

it is not always sufficient. Being able to distinguish between

a flat anomaly that represents no danger (such as a piece of

cardboard Fig 7) and a 3D obstacle that can potentially be

dangerous (such as a burst tyre Fig 6) is very important to

avoid false positive alerts and their potential consequences

(autonomous braking and lane changes). The solidity and

degree of hazard of an anomaly is difficult to evaluate with

a single 2D image. Future work will investigate the use of

stereo vision (in particular uncalibrated vertical stereo) as

well as video-based 3D inferencing to estimate the volume

and configuration of the anomaly on the road. In terms
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Original Error Heat Map Post-Processed Zoom-in Zoom-in Error

Fig. 6. Example on three real anomaly videos.

0001915 0001925 0001935 0001945 0001955 0001965

Fig. 7. Example of a detection sequence on a flying piece of cardboard sampled every 10 frames. Zoomed-in for visualization only. Notice that the part
under the bridge shadow is properly reconstructed as being the road.

of texture reconstruction, it appears that patches within the

same image or temporal sequence are highly correlated.

Using such information might further increase the detection

performance of our system.

Our final word concerns the data. An ideal situation would

be to compare methods without resorting to synthetic data.

However obstacles on the road in non-controlled environ-

ments are both rare and dangerous. Because they are rare it

is difficult to gather enough high-resolution data to construct

a large test dataset. Because they are dangerous we can not

easily recreate such events on real highways. We think that

large data collections of highway footage and the creation of

labeled datasets of anomalies will be a good way to stimulate

further research in this area.
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