
Int J Comput Vis
DOI 10.1007/s11263-012-0605-9

A Machine-Learning Approach to Keypoint Detection
and Landmarking on 3D Meshes

Clement Creusot · Nick Pears · Jim Austin

Received: 14 October 2011 / Accepted: 17 December 2012
© Springer Science+Business Media New York 2013

Abstract We address the problem of automatically
detecting a sparse set of 3D mesh vertices, likely to be good
candidates for determining correspondences, even on soft
organic objects. We focus on 3D face scans, on which sin-
gle local shape descriptor responses are known to be weak,
sparse or noisy. Our machine-learning approach consists of
computing feature vectors containing D different local sur-
face descriptors. These vectors are normalized with respect
to the learned distribution of those descriptors for some given
target shape (landmark) of interest. Then, an optimal func-
tion of this vector is extracted that best separates this par-
ticular target shape from its surrounding region within the
set of training data. We investigate two alternatives for this
optimal function: a linear method, namely Linear Discrim-
inant Analysis, and a non-linear method, namely AdaBoost.
We evaluate our approach by landmarking 3D face scans
in the FRGC v2 and Bosphorus 3D face datasets. Our sys-
tem achieves state-of-the-art performance while being highly
generic.

Keywords keypoint detection · landmarking · 3D face
recognition · Machine learning · LDA · AdaBoost

C. Creusot (B) · N. Pears · J. Austin
Department of Computer Science, University of York, York, UK
e-mail: clementcreusot@gmail.com

N. Pears
e-mail: nick.pears@york.ac.uk

J. Austin
e-mail: jim.austin@york.ac.uk

1 Introduction

Searching for corresponding points (correspondences) across
a pair of shapes is an essential early process for a large number
of applications involving 2D images, 3D meshes and multi-
modal systems that use a mixture of both. For example, in
stereo vision, structure-from-motion and tracking objects in
video, we need to establish pairs of image points that cor-
respond to the same scene point. Establishment of 3D point
correspondences is often required for 3D shape registration
and matching, particularly in the case of partial views (the
rear faces of 3D shapes are not captured in 2.5D scans). These
processes are essential components of 3D object retrieval and
3D shape recognition systems.

Since the determination of correspondences is a search
problem, with O(n2) complexity, a reduction in the search
space by detecting a sparse set of keypoints1 is common prac-
tice. The use of corner detectors is the classic example of this
in 2D images, while a locally extremal value of Gaussian cur-
vature is commonly used on 3D meshes.

Note that a keypoint is an unlabeled point and a good
keypoint detector generates outputs at pairs of points with
locally similar shapes across a pair of similar 2D images or
3D scans. At the same time, the detector should generate as
few as possible outputs in the overlapping region of the two
images or scans that are not part of a valid correspondence.

Often keypoints are used directly to determine correspon-
dences between a pair of 2D images or a pair of 3D scans of
the same scene object. Keypoints can also be used to initialise
the pose and shape parameters of a generic shape model, such
as a 3D morphable face model. In this case, a sparse set of
reliably detectable landmarks is selected (usually manually)
on the generic shape model and these are the points that we

1 Also called interest points or feature detections in other literature.

123

Int J Comput Vis

aim to match extracted keypoints to. We can view the sparse
set of landmarks as a subset of a relatively dense generic
shape model and we encapsulate this small subset of points
and their relative positions in an entity called a landmark
model, L. This model is annotated with L landmarks, where
landmarks have both a position and a label. Hence, in con-
trast to keypoints, they are labeled points.2 When keypoints
are the inputs of a labeling system, they are seen as land-
mark candidates and are usually associated with a list of
possible candidate landmark labels. Often, the initial map-
ping between query scan keypoints and model landmarks
is many-to-many. However, once a one-to-one correspon-
dence is established between a keypoint on a query scan and
a landmark on the model, L, a keypoint may ‘acquire’ the
associated model label and is then upgraded to a landmark.3

Thus the landmarking process usually contains two main
parts: detecting keypoints on a query, which usually pro-
vides many landmark candidates, and eventually selecting
n of these, up to a maximum of the total number of model
landmarks, the actual number depending on the degree of
occlusion on the query scan. Detecting the keypoints and
computing the correspondences with the landmark model’s
labels are two different problems. The keypoint detection can
be seen as a local-only (featural) problem while the corre-
spondence search takes into account both local (featural) and
global (configural) information. This paper is mainly focused
on the detection of keypoints on 3D scans as probable land-
mark candidates. However, in Sect. 6, we present a method
that uses our keypoint detector in a complete 3D face land-
marking system and we compare it to the state-of-the-art in
order to demonstrate the high performance and generality of
our approach.

Captured 3D scans have several advantages over 2D
images; for example, scale changes are often not so pro-
nounced for some object class and it is easier to deal with
pose and illumination variations. However, they also have
a set of specific drawbacks. For example, if one compares
a 2D image and 3D depth map of a soft, organic structure
such as a human face, there appears to be a larger number of
salient structures in the 2D image, which could be localized
by standard 2D keypoint detectors. However, the applica-
tion of a standard keypoint detector on a 3D scan, such as
locally extremal Gaussian curvature, leads to a highly sparse
set of keypoints. This is the main motivation for building
our machine learning based keypoint detection system. An
important aspect of our keypoint detector, that allows its gen-
eral deployment, is that it can generate useful keypoints over

2 It is essential that the reader distinguishes carefully between unlabeled
keypoints and labeled landmarks throughout this paper.
3 To be more precise, a query scan point close to an extracted keypoint
is sometimes designated to be the landmark, in order to minimize the
least-squares error when fitting model L. This is discussed in Sect. 6.

large regions of soft, organic shapes, as there is no require-
ment for a keypoint to exist at the locally extremal value
of any single, scalar local shape descriptor4 (e.g. Gaussian
curvature).

Rather, a set or dictionary of L local shapes is learned,
where each member of the dictionary is associated with a
particular landmark that is labeled across a set of training
meshes. Subsequently, keypoints can be generated on query
meshes, where the local shape is highly similar to one of the
members of this dictionary.

Although many researchers have developed systems to
detect facial features in 2D images, using well-defined
machine learning techniques, researchers working with 3D
faces have almost exclusively developed heuristic approaches
that rely on restrictive assumptions, such as a near-frontal
pose. These approaches are usually landmark dependent
sequential recipes taking advantage of patterns detected by
their designers. Such a recipe can be, for example, to take the
tip of the nose as the most extreme point along one direction
or as the maximal convex curvature in the query scan. These
recipes give very good results for very salient points on most
existing datasets, but are bound to fail on some scans of non-
cooperative subjects; for example, when the assumption of a
near-frontal pose is broken or when the nose tip is occluded.

In summary, the main contribution of this paper is a
generic keypoint detection process for 3D meshes, based on
machine learning, which is then employed in a 3D face land-
marking system in order to improve upon existing heuristic
approaches. In our system, detector functions are learned
rather than being enforced by the designer of the system.
This allows:

1. generality, as all of the landmarks are processed with the
same general framework;

2. a more reliable detection of landmarks when the input
data is not cropped (e.g. when there are non-facial ele-
ments in a face capture);

3. an intrinsic robustness to missing data, because we do not
follow a sequential progression through the landmarks.
Most other landmarking systems will fail if the nose or
the inner eye corners are missing, as these strong features
are often used to search for weaker, less salient features;

4. the detection of less salient features for which human
designers struggle to create detection functions or rules
(e.g. corners of the mouth and outer corners of the eyes
on the human face).

4 We define a scalar local shape descriptor as a real number that
describes the shape of the local neighborhood surrounding some mesh
vertex. In some literature, this is termed a feature or feature descriptor.
Here, the local neighborhood is Euclidean and enclosed by a sphere of
predefined radius.

123

Int J Comput Vis

Fig. 1 Example of keypoint detection using our method on a 3D scan from the FRGC dataset

Fig. 2 Problem breakdown.
The landmarking problem is
split into two sub-problems that
are solved independently:
keypoint detection and labeling.
Although this paper mainly
focuses on solving the keypoint
detection problem, we also
apply our technique in a
landmarking problem

Specific contributions on a practical level are:

1. a new method for keypoint detection on meshes, using a
dictionary of L learned local shapes (see Fig. 1);

2. an evaluation of its performance using two different
approaches to generate functional forms of local shape
descriptors, linear (LDA) and non-linear (AdaBoost);

3. a new framework for 3D mesh landmarking based on
automatically detected keypoints (see Fig. 2).

The work presented here is an extension of our work
in Creusot et al. (2011) and is structured as follows. In the
first section, previous work on keypoint detection and land-
marking of 3D meshes is reviewed. In the following overview
section, Sect. 3, we give our problem definition and we out-
line the offline training and online testing processes of our
solution. Here, we also discuss our datasets and performance
metrics used for evaluation. In the following section, we
present the fine detail of our machine learning approach to
keypoint detection on 3D meshes. In Sect. 5, we evaluate
this keypoint detection system, while the following section
describes its application to landmarking. A final section is
used for conclusions.

2 Previous Work

Unlike tracking and stereo-vision applications, or matching
generic salient points across 3D shapes, landmarking requires
candidate positions that are close to the targeted human-
defined landmarks required for a particular application. This
is usually achieved through an expert system approach: the
system designer (expert) will notice a correlation between
the local shape of the mesh and the targeted landmark and
use this observed correlation to define some heuristic rule to
select candidate positions on new queries. For example, the
expert will observe that the position of the nose tip is often
correlated with the highest convex curvature points in the
central facial area or that the nose is the closest point to the
camera or the most extremal point in a particular direction.
Unfortunately, rules extracted from such observations won’t
always work in the general case, as the input may contain arti-
facts other than the face, such as hair, hands and accessories
(e.g. hats, glasses).

2.1 Landmark Candidate Detection on 3D Faces

A scalar descriptor of some specific type can be computed
at every vertex of a mesh. Typically these values are color

123

Int J Comput Vis

mapped and rendered over the mesh to give a visualization
of how the descriptor responds to the local shapes within the
mesh. Such a visualization is termed a descriptor map (or,
in some literature, a feature map). It can be thought of as a
scalar field over the scanned object’s surface that is sampled
at the vertices of the mesh.

The use of descriptor maps on 3D meshes, such as
Gaussian curvature maps, is common practice to detect
landmark candidates. A typical multiple landmark detec-
tion approach is presented in Colbry et al. (2005). First, the
authors preprocess the face to remove spikes, before cropping
the upper part of the scan as being the region of interest. Then
the nose is localized as the closest vertex to the camera, or
the most extreme point in a particular direction (left or right),
or the one with the largest shape index. The inner eyes corner
are detected as the points with the smallest shape index. This
kind of approach has a lot of variants and is widely used in
both academic and commercial systems.

Other authors have noticed that the sagittal slice of the
face remains identical over orientation changes and there-
fore can be used to detect the nose. In Faltemier et al. (2008),
contours of the mesh are extracted at varying angles until it
matches a previously learned nose profile signature. The sys-
tem achieved a 98.52 % accuracy on the NDOff2007 3D face
dataset, for the nose tip with variations of angle up to 90◦.
(This dataset contains a total of 6,911 non-frontal images con-
taining neutral expressions and a single frontal neutral image
for each of 406 distinct subjects.) Some non pose-invariant
techniques have also used transverse slices to detect the nose
tip and the nose corners (Segundo et al. 2007; Mian et al.
2006).

To summarize, most papers on 3D face landmarking have
their keypoint detection system grouped in one of the follow-
ing categories:

– curvature/volume extrema: the candidates are defined as
extrema over curvature and/or volume based descriptor
maps (Chang et al. 2006; Colbry et al. 2005; D’Hose
et al. 2007; Pears et al. 2010; Romero and Pears 2009;
Segundo et al. 2007; Szeptycki et al. 2009).

– directional extrema: the candidates are defined as the
extremal points in given directions (Chang et al. 2006;
D’Hose et al. 2007). This is only used for the nose tip
detection.

– 2D curve extrema: by using profiles and slicing of
the mesh, the detection of salient points is reduced to
finding extremal points along a two-dimensional curve
(Faltemier et al. 2008; Mian et al. 2006; Segundo et al.
2007).

Several previous studies have acknowledged the lim-
itations imposed by heuristic approaches and employed
machine learning techniques instead (Berretti et al. 2010;

Zhao et al. 2011). However, they usually employed 2D
descriptors on depth maps making their systems unusable
in scenarios presenting a large rotation from the frontal
view. To the best of our knowledge, it appears that no 3D
machine learning method exists for facial landmark candi-
date (keypoint) detection (see Fig. 3). This is a gap in the
literature that we aim to fill, to enable better landmarking
on face scans of non-cooperative subjects. Clearly, this has
great utility in high-throughput 3D face recognition systems
that do not require subject cooperation. Our proposed system
is sufficiently generic to be applied to meshes of other gen-
eral classes of objects, in any application where landmarks
of interest can be manually defined on a set of training scans.

2.2 Keypoint Detection on Faces

Keypoints on 3D faces are often not labeled and, typically,
they are used for the purpose of face recognition. In these
cases, the desired keypoints are repeatable for a given iden-
tity but differ from one individual to another. For example,
Mian et al. (2008) use a coarse curvature-related descrip-
tor to detect such keypoints, while in Berretti et al. (2010)
and Mayo and Zhang (2009), they are computed using the
Scale-Invariant Feature Transform (SIFT Lowe 2004) on 2D
depth-maps.

In this paper, the term keypoint is justified as we try to
detect unlabeled repeatable point of interest. However, our
approach differs, as the scope for the targeted repeatability
is larger. Our technique should be able to detect repeatable
point of interest across the population and not only for sev-
eral captures of the same individual. Therefore, our system is
designed to extract macro-features (nose, eyes, mouth) com-
mon across a whole population of objects (faces), instead of
discriminative micro-features (e.g. wrinkles) that are often
specific to individuals.

2.3 Keypoint Detection and Landmarking on Other Objects

Computing keypoints in order to determine correspondences
is useful for all kinds of object matching applications. Shape
retrieval (e.g. in web search applications) is one such applica-
tion and there is now a robust feature detection and descrip-
tion benchmark, the SHREC benchmark (Boyer et al. 2011),
that tests the performance of feature detectors and descriptors
under a variety of transformations, such as scaling, affine and
isometry (bending) transformations, and a variety of noise
conditions.

In Mian et al. (2010), keypoints are computed using a
coarse curvature descriptor to localize objects in scenes with
occlusions. In Zaharescu et al. (2009), an approach called
Mesh DoG is presented. This is a multi-scale approach that
makes use of Difference-of-Gaussians (DoG), and thus has
similarities to the DoG approach applied to 2D images in

123

Int J Comput Vis

Fig. 3 Related work: facial landmark candidate detection usually appears as a single section in face landmarking papers. Most of them are sequential
recipes. Some use machine learning techniques but in these cases, they are always with 2D representations (e.g. SIFT Lowe 2004 on depth maps)

the SIFT descriptor (Lowe 2004). In this approach, any sur-
face descriptor map can be convolved with a set of Gaussian
kernels of different scales (standard deviations). Subtracting
convolutions across two adjacent scales gives the DoG oper-
ator response. Keypoints are then extracted as the local max-
ima across scale space, using non-maximal suppression in a
one-ring neighborhood in the current and adjacent scales. A
similar DoG-based approach is presented in Castellani et al.
(2008). However, here the DoG operator is applied to the
actual mesh over a range of scales. The amount that a vertex
moves between Gaussian filtering at one scale and the next
is projected along the vertex normal. Keypoints are extracted
as points of maximal normal movement over local neighbor-
hoods and local scales.

In Ben Azouz et al. (2006), landmarking of 3D human
models is addressed. Here a graphical model is created, with
landmarks at the graphical nodes being characterized by spin
images (Johnson and Hebert 1999). Functions express the
likelihood that a particular landmark corresponds to a given
vertex on the query mesh (based on the distribution of learned
spin images in the model). Other functions constrain a pair of
landmarks to be consistent with their learned spatial relation-
ship in the model. To perform the optimization of landmark
assignment, the authors employ a belief propagation algo-
rithm. An interesting aspect of this approach is that it does
not use a keypoint extraction phase to reduce computation
time. Encouraging results are obtained on a very small test
set (30 scans).

In Itskovich and Tal (2011), two kind of curvature-related
descriptor (shape index and Willmore energy) are combined
to detect the keypoints on archaeological objects in order to
detect regions matching a given pattern. This paper is one
of the rare case where more than one local shape descrip-
tor is used for the keypoint candidate selection. An other
example is Dibeklioglu et al. (2008) where shape index, dif-
ference map, and image gradient are combined for landmark
localization. Besides, when several such scalar descriptors
are used, combining them is usually done using fixed coeffi-
cients.

In this paper, a framework is presented to determine
automatically how descriptors should be combined for each
landmark in landmark model L, designed for the specific
problem of 3D face landmarking.

3 Overview

In this section, we give the problem statement, outline our
solution and the methodology for its evaluation.

3.1 Problem Statement

The main problem that we address is the detection and subse-
quent labeling of points on input 3D meshes that are locally
similar to at least one member of a set of L predefined land-
marks in a landmark model (see Fig. 1).

123

Int J Comput Vis

This statement implies that the landmarked points should
be a subset of the input mesh’s vertices. This can be justified
in our case by the fact that the resolution of the input mesh
is good enough compared to the acceptable error in position-
ing. ‘Sub-vertex’ localization of landmarks (i.e. to a higher
resolution than the input mesh) is an interesting problem for
landmark refinement techniques, but is not discussed in this
paper. Rather, our aim is to enable the system to automati-
cally learn functions of a set of D local shape descriptors,
extracted over a set of training meshes, that enable robust
keypoint detection on unseen input meshes.

3.2 Outline of the Keypoint Detection System

We define L = 14 landmarks in a landmark model L, as
shown in Fig. 4. In each of a set of N training meshes, these
L landmarks are manually localized with a point-and-click
interface.

To implement our system, we need to define what kind of
local shape descriptors to use. The use of a single scalar 3D
local descriptor on its own is usually not very discriminative.
Therefore, we use a set of D (10–48) scalar shape descriptors
including, for example, Gaussian curvature, mean curvature
and a volumetric descriptor (details given in Sect. 4.1). After
normalization to a set of scores (which range from 0 to 1),
these form a feature vector that describes local shape at some
mesh vertex. (It can be thought of as a D-dimensional vec-
torial descriptor, which is composed of a collection of scalar
descriptors.)

Our framework is composed of an offline training process
and an online keypoint detection process, as illustrated in
Figs. 5 and 6 respectively, and we now describe each of these
processes in turn.

3.2.1 The Offline Training Process

Figure 5 shows the offline training process, which is used
to teach the system what is considered to be a shape of
interest. The inputs to this training system are a set of N
training meshes and an associated set of L landmarks per

Fig. 4 Position of the 14 landmarks, centers of our local shapes of
interest for the training part of the system

training mesh, where each specific landmark, λ (e.g. nose
tip), has a vertex index, i , within a training mesh. Within
our system, D local shape descriptors are defined and we
can process an arbitrary number of such descriptors, up to
some limit imposed by memory and computation time lim-
itations. The following four broad steps outline our training
process.

1. For every training mesh, D descriptor maps are gener-
ated, where a descriptor map is defined as the raw descrip-
tor values, xd , d ∈ {1 . . . D}, computed over all vertices
of a training mesh.

2. Then, for each landmark, λ ∈ {1 . . . L}, we collect the
N raw descriptor values over the N training meshes and
estimate the parameters of their distributions (we primar-
ily use Gaussian distributions, see Sect. 4.2.1).

3. These learned statistical distributions allow us to map raw
descriptor values into normalized descriptor-landmark
scores or DL-scores. (In terms of visualizations, DL-
score maps are generated from descriptor maps.) Such
scores are specific to a descriptor-landmark, (d, λ), pair
and hence there are D× L of these per vertex per training
mesh (see Fig. 5). To generate these scores, over all ver-
tices of a training mesh, the raw values, xd , of descriptor
d are projected against the distribution of xd at land-
mark λ and normalized by the probability density func-
tion (pdf) maximum of the distribution. Scores close to 1
are obtained if the descriptor value is close to the modal
value of the distribution, and scores close to zero are
obtained if the descriptor is far from that modal value.

4. Effectively, these D scores, computed with respect to the
distributions at some landmark, λ ∈ {1 . . . L}, form a
D-dimensional feature vector at every vertex across all
training meshes. We can form two classes of such fea-
ture vectors: those from vertices that are close to land-
mark λ across all of the training meshes and those from
surrounding vertices that are more remote from the same
landmark. An example of the two classes employed is
shown in Fig. 7, where neighboring vertices of the upper
lip landmark are shown in blue and the non-neighboring
class of vertices is shown in red. (Note that this is only
shown for one face scan, but these classes are formed by
the union of all such vertices across the full training set.)
We then learn the function operating on these feature vec-
tors that best discriminates between these two classes. In
effect, this is a detector function, fλ, and there is one for
each landmark, λ. In the case of LDA, this detector func-
tion is a linear combination of the elements of the feature
vector, whereas a non-linear function is generated using
AdaBoost.

To summarize the training process, L landmarks labeled
over each mesh in a training set are used to define a dictionary

123

Int J Comput Vis

of local shapes where, for each shape, both the statistical
distributions of shape descriptors and the rules for combining
such descriptors are learned. The concept of this dictionary
is illustrated by the red boxes in Figs. 5 and 6

It is important to note that the normalization of DL-scores
in step 3 is not essential to apply our machine learning
processes in step 4. Learning of the detector function could
be applied directly to the raw descriptor values, as one might
expect when using a powerful classifier such as AdaBoost.

In fact in Creusot (2011)[p. 150–152], we compare detector
functions learned from scores against those learned from raw
descriptor values. We found that the performance was very
marginally better for scores, but the difference was so small
as to not be significant. (In more detail: for 6 landmarks,
scores gave marginally better performance, for 3 landmarks,
raw descriptors gave marginally better performance and for 5
landmarks the performance was almost identical.) However,
improved detector functions was never the intention of using

Fig. 5 Offline process: known
landmark positions on the
training set are used to learn
idealized distributions
(parameterized class-conditional
probability density functions) of
the descriptor values for each
shape of interest. The matching
scores computed using those
distributions are used to train the
descriptor combination system
for every landmark as explained
in Sect. 4.3

Fig. 6 Online process: D
descriptor maps are computed
from the input mesh, each value
is matched against the L learned
descriptor distributions (14) to
get score maps with values
between 0 and 1. For each
landmark, the D descriptor
score maps are combined using
the learned combination rules
and renormalized to span the
range (0–1). The L normalized
landmark score maps are
combined into a single final
keypoint score map, using the
maximal value (of L values) at
each vertex. The output
keypoints are the strongest local
maxima detected on this
keypoint score map that are
above some given threshold T

123

Int J Comput Vis

Fig. 7 Example of vertex class generation, showing neighboring (blue)
and non-neighboring (red) vertices for the upper-lip landmark on one
face of the training set

scores when we developed our framework. Rather, we claim
the following advantages:

– Scores normalize descriptor values to compatible ranges,
thus giving a great deal of insight to the researcher about
the inner workings of the classification technique allow-
ing us to rapidly know which descriptors are good to
use and for what landmarks they should be employed
(Creusot et al. 2011).

– Scores make visualization of results much easier, as wit-
nessed by the colormap graphics in this paper.

– Scores allow histogram descriptors and scalar descriptors
to be used in the same framework at the same time. All
types of descriptor are converted to the same space (a unit
hypercube), which make it possible to use very hetero-
geneous types within the same framework. This is a real
strength of our framework in terms of its extensibility.

3.2.2 The Online Keypoint Detection Process

The online part of our system takes a previously unseen face
mesh as its input. The process is composed of the following
stages, see Fig. 6.

1. D local shape descriptors (scalars, e.g. Gaussian curva-
ture) are computed for all V vertices in the input mesh.

2. For each of the L learned local shapes:

– D Descriptor-Landmark score (DL-score) maps are
computed by projecting the descriptor values of each
vertex against the associated learned distributions
of the target landmark. The scores generated are
between 0 and 1. A value of 1 is generated when the
value of the descriptor is equal to the maximum of the
learned distribution (modal value). These normalized
scores are collected together into a D-dimensional

descriptor, or feature vector, at each vertex of the
input mesh.

– Using the learned detector function, fλ, for landmark
λ in the training phase, a (scalar) response is gen-
erated, which we call a landmark score. The land-
mark score map is then normalized over the mesh to
ensure the matching scores associated with different
landmark shapes have the same impact on the final
keypoint extraction stage. This normalization ensures
that the landmark score map has values ranging from
0 to 1.

3. All of the landmark score maps are combined into one
final keypoint score map, by using the maximum value
(over all L landmark dictionary shapes) for each vertex
(see Fig. 14).

4. The keypoints are defined as the strong local maxima
on this final keypoint score map. A threshold T is used
to discard weak candidates. The maximum number of
keypoint retained is limited to 1 % of the total number of
vertices.

This completes the outline of our system. A more detailed
description of our keypoint detection system is presented in
Sect. 4 and describes the descriptors employed and imple-
mentation details. The remainder of this section describes
the datasets (Sect. 3.3) and performance metrics (Sect. 3.4)
that we use for evaluation.

3.3 Datasets

Our keypoint detection system, described above, is tested
on the Face Recognition Grand Challenge version 2 (FRGC
v2) dataset (Phillips et al. 2005) containing 4,950 faces of
557 individuals. This data contains both males and females
with some variation in ethnicity, age and expression as well
as small variations in pose (under 10◦). The dataset is fairly
uneven in terms of capture per identity with some individuals
appearing only once while others appear thirty times. This
dataset is widely used in the research community and, over
the years, has become a standard benchmark for 3D face
processing systems.

The input data for our system is lower resolution than the
original structured point cloud (640 × 480 vertices). The
point density is reduced by replacing each block of 4×4 raw
3D data points with its average. A mesh is then created by
defining two triangular faces for every group of four adjacent
vertices .

For the landmarking experiments, both the FRGC and the
Bosphorus dataset Savran et al. (2008) are used. The Bospho-
rus dataset contains 4,666 captures of 105 people. Unlike
the FRGC, it contains large variations in pose and occlu-
sions (hands, hair and glasses partially covering the face). In

123

Int J Comput Vis

the landmarking experiments, for which time performance is
measured, the point density of the original input data in both
datasets is reduced by binning the points into square pixels
of fixed size 3.5 mm . Compared with the aver-
aging method, this allows us to reduce even further the point
density (and therefore the computation time), while keeping
a fixed resolution whether the face is captured from a close
or remote position.

For the FRGC dataset, 200 neutral expression scans of dif-
ferent individuals are selected randomly as our training set
and all remaining scans are used as a test set (4,750 faces).
The manually-derived ‘ground truth’ landmarks are a mix-
ture of contributions from Romero-Huertas et al. (2008) and
Szeptycki et al. (2009) with additional manually located land-
marks and refinements.

For the Bosphorus dataset, only 99 neutral expression
frontal scans are used as training, leaving 200 faces in the
neutral-frontal test set and 4339 scans in total in the global
test set.5 The ground-truth landmarks are the ones provided
with the dataset (Savran et al. 2008) with some manual addi-
tions (subnasale, nasion) and refinements.

3.4 Performance Metrics

We define three performance metrics to evaluate the per-
formance of our systems: the landmark retrieval rate, the
landmark positioning error and the global registration error.
Each of these is described in the following three subsections.

3.4.1 Landmark Retrieval Rate

We define the landmark retrieval rate for a particular land-
mark as the percentage of test scans in which the system cor-
rectly retrieved its position given an error acceptance radius.
For example, if the test set contains 1,000 models, among
which 990 have a ground truth landmark for the nose tip, and
if we use an error acceptance radius of 10 mm, the landmark
retrieval rate will be the percentage of the 990 models which
present a detected nose tip landmark within 10 mm of the
known nose tip position.

Usually it is not clear what radius should be used for such
evaluation. As a good practice and to facilitate results com-
parison with other researchers, the retrieval rates are pro-
vided for a varying acceptance radius (usually increasing
from 2.5 mm to 25 mm in steps of 2.5 mm).

3.4.2 Landmark Positioning Error

Computing the distance from every localized landmark to the
ground truth position of the corresponding label is an interest-

5 Subsets R_90, L_90 and I G N of the Bosphorus dataset are not used
in this paper.

ing measure for the global landmark localization framework.
However this continuous measure is more meaningful for
landmark positioning refinement than for coarse landmark
localization. This measure doesn’t allow notions of discrete
failure and will only be used in the last section where a com-
plete landmarking system is presented.

3.4.3 Global Registration Error

We can register the detected landmarks with the ground truth
landmarks in the same scan. If a scale-adapted rigid registra-
tion is used, we expect to see zero rotation, zero translation
and a unity scale in the ideal case. Any deviation from the
ideal values gives a global measure of the landmarking per-
formance. This give us an interesting performance metric for
the overall matching.

4 A Machine Learning Approach to Keypoint Detection

In this section, the implementation details of our keypoint
detector are presented. When reading this section, it is use-
ful to keep the system overview presented in Sect. 3.2 and
associated figures, Figs. 5 and 6, in mind.

4.1 Computation of Descriptors

Our system makes extensive use of local shape descrip-
tors; in this section, details about their computation are pre-
sented. In our experiments, two kinds of descriptors are
used, scalar-valued descriptors (e.g. Gaussian curvature) and
vector-valued descriptors. This latter form of descriptor is a
local shape histogram, such as a spin image (Johnson and
Hebert 1999).

4.1.1 Normals

Several of the descriptors require a normal defined at every
vertex. To compute the normals, a simple method using the
adjacent triangle faces is used. When the mesh has been built
from the 2D depth map, all the triangle faces have been
defined anti-clockwise with regard to the camera position.
Therefore all the normals of the faces are pointing outward.
When setting the normal at a vertex i , a weighted sum of the
normals of the neighboring faces is computed. The weights
given for each of the adjacent faces are computed using the
Nelson Max technique (Max 1999):

cni =
ne

i∑

j=1

e j × e j+1

|e j |2|e j+1|2 (1)

123

Int J Comput Vis

where ni is the normal vector at vertex i , c is a constant that
disappears after unit-length normalization, ne

i is the number
of edges adjacent to vertex i and e j the vector correspond-
ing to the j th neighboring edge. As the normal is computed
at every vertex, the efficiency of the process is improved
by looping over the triangle faces and accumulating the face
normals with the corresponding weights on the three vertices
of the face. This guarantees that the face normals are com-
puted only once (instead of three times with a naive algorithm
looping on vertices).

4.1.2 Neighborhoods

A point by itself contains very little information: only its
position in the space. To extract more information one needs
to know how this point is positioned with regard to the other
points within its local neighborhood. In other words, a quan-
titative description of local shape needs to be extracted in a
way which is invariant to the orientation (pose) of the scanned
object (face) with respect to the 3D camera. This is a function
operating on a set of vertices contained within a local neigh-
borhood.

To determine this local neighborhood,the only thing that
is needed is a metric and a threshold. Here we use a sim-
ple Euclidean metric to determine the neighborhood (see
Fig. 8) i.e. vertices need to be within a bounding sphere of
some specified radius that defines neighborhood size. The
choice of neighborhood size is a compromise. A neighbor-
hood that is too small with respect to the raw data reso-
lution will lead to local surface properties being noisy or
undetermined. On the other hand, if the local region is too
large, the notion of locality is broken and the descriptor val-

Fig. 8 Neighborhood computed using Euclidean distance. The red line
is the intersection of the sphere of radius R with the surface. Every point
inside the sphere is part of the local neighborhood. The blue vertices
represent the perimeter (Color figure online)

ues become vulnerable to occlusions. Since the neighbor-
hoods depend on a fixed distance, every descriptor using these
neighborhoods cannot be invariant to the scale of the scanned
object.

4.1.3 Principal Curvatures

The curvature is a simple notion of 2D geometry that mea-
sures the bending of a curve at a particular point. It is defined
as the inverse radius of the osculating circle at that location.
This 2D notion can be used with points on a 3D surface by
extracting 2D plane curves at those points using an intersect-
ing plane. This intersecting plane always contains the normal,
leaving one degree of freedom, the angle around the normal,
and therefore an infinite number of possible 2D curves and
curvature values. To provide a simple measure of the 3D
surface curvature, only two angles are selected: the ones giv-
ing the maximal and minimal curvature values known as first
(k1) and second (k2) principal curvatures (see Fig. 9 for these
descriptor maps).

Computing these two values for a discrete surface is not
trivial. The curvature computation approach employed is
the Adjacent-Normal Cubic Approximation method proposed
in Goldfeather and Interrante (2004).

4.1.4 Descriptors Derived from Principal Curvatures

The two principal curvatures k1 and k2 are rarely used
directly. Most of the time they are used to compute other
descriptors. A list of the most commonly used ones is given
below:

– Gaussian Curvature (K):

K = k1k2 (2)

– Mean Curvature (H):

H = k1 + k2

2
(3)

– Shape Index (SI): two variants

SI0,1 = 1

2
− 1

π
arctan

k1 + k2

k1 − k2
, 0 ≤ SI0,1 ≤ 1 (4)

or

SI−1,1 = 2

π
arctan

k1 + k2

k1 − k2
, −1 ≤ SI−1,1 ≤ 1 (5)

123

Int J Comput Vis

Fig. 9 Examples of descriptor maps for the first (k1) and second (k2) principal curvatures (REucl.
scalar = 15 mm) (Color figure online)

– Curvedness (C):

C =
√

k2
1 + k2

2

2
(6)

– Log-Curvedness (LC):

LC = 2

π
log

√
k2

1 + k2
2

2
(7)

– Willmore Energy (W):

W = H2 − K = (k1 − k2)
2

4
(8)

– SC (Kim et al. 2009):

SC = SI−1,1 · LC = 4

π2 log

√
k2

1 + k2
2

2
arctan

k1 + k2

k1 − k2

(9)

– Log Difference map (Dibeklioglu et al. 2008):

LD = ln(K − H + 1) = ln(k1k2 − k1 + k2

2
+ 1) (10)

Figure 10 shows some examples of scalar descriptor maps
on frontal and profile 3D faces.

4.1.5 Local Volume (VOL)

Other kinds of measures that can be made from the local
neighborhood are the ones that use volume. First, the
barycenter (point pc(vi)) of the perimeter of the neighbor-
hood of vertex vi is determined. Then the volumes of the
tetrahedra computed from this point and all the faces of the

neighborhood are summed. Figure 11 shows how the tetra-
hedra are computed. As the faces are oriented the volume can
be positive (concave shape) or negative (convex shape).

4.1.6 Distance to Local Plane (DLP)

The distance to local plane is a coarse measure of the con-
vexity/concavity at a point (Pears et al. 2010). It is defined
as the Euclidean distance between vertex vi and the plane
fitting its neighboring points. This corresponds to projecting
the vector between the centroid of the neighborhood and the
vertex vi onto the normal direction of the plane. In general,
the neighborhood used to compute the normal and the neigh-
borhood used to compute the target centroid can be different.
However, it is usually simpler to take them as equal.

4.1.7 Histogram-based Local Shape Descriptors

Simple scalar descriptors are sometimes limited in terms of
their ability to describe local surface shape. When dealing
with complex surface shapes, more information is needed
than a simple scalar value. It is possible to build local shape
descriptors using histograms i.e. any array of fixed dimen-
sions containing information about the neighboring surface
at some mesh vertex. These are inherently feature vectors in
themselves, but can be combined, in full or part, with the
scalar descriptors described above to form larger and poten-
tially more discriminating feature vectors.

Such histogram-based descriptors are often computation-
ally expensive. For this reason they are usually only used as
descriptors for matching a sparse set of keypoints, rather than
used for detection of keypoints on a relatively dense set of raw
mesh vertices. However, it is important that our framework
is versatile and can use any kind of descriptor. Therefore,
we have implemented two histogram-based descriptors and
employed them within our keypoint detection framework, as
follows.

123

Int J Comput Vis

Fig. 10 Examples of scalar fields computed on two models of the same
individual with different orientations (REucl.

scalar = 15 mm). In an stan-
dard expert system approach, the researchers would look for extremal

(red or blue) blobs on this maps that repeat under different pose and
identities at known landmark position. Those human-extracted patterns
would then be used to extract landmarks on new unseen query meshes

123

Int J Comput Vis

Fig. 11 Example of local
volume (VOL) computed at the
extreme vertex of a hyperboloid
surface. (a) The neighborhood
border points are used to
compute the centroid point
(blue) which is not far from the
ideal center of the intersection
curve (red). (b) The signed
volumes of all tetrahedron are
summed (Color figure online)

– Spin images The spin-image descriptor introduced in
Johnson and Hebert (1999), encodes local shape rela-
tive to a mesh vertex and its normal. In particular, it
is a histogram of radius and height values, where the
radius is the orthogonal distance to the normal, and the
height is a signed distance, relative to the vertex, in the
direction of the normal. The name spin image is used
because we can visualize a gridded half-plane being
rotated around the vertex normal and neighboring ver-
tices being accumulated in cells (bins) to form the shape
histogram. In this sense, the cells of the histogram are
analogous to the pixels of an image. The cells are not
required to be square and the cell size can vary from
cell to cell; for example, by following a log function.
Here, only fixed sized cells are considered. The parame-
ters for this descriptor are the number of radial cells, the
number of vertical cells and the radial and vertical cell
sizes.

– Spherical images The spherical image is a local shape
descriptor that is simpler than the spin image and consists
of a one dimensional vector of bins. Each cell represents
the number of vertices present between two consecutive
spheres centered on some mesh vertex, vi .

4.2 Generating Descriptor-Landmark Scores

While correlations sometimes exist between descriptors’
extremal values and the presence of landmarks (e.g. at the
nose tip and near the inner eye corners), this can not be
extended to less well-defined local shapes. By learning a dis-
tribution of the values of a descriptor for a particular shape of
interest, one can easily determine, for any new point, a score
for matching to a particular landmark.

If the value of one descriptor, at a particular vertex, is
close to the maximum of the probability density function of
a known shape, it has a good chance of corresponding to this
shape, at least in the context of that descriptor.

4.2.1 Distributions of Local Shapes

For each landmark in the training set, the distribution of the
values for one descriptor can be observed and approximated
with a parameterized class-conditional probability density
function where, in this context, the class is the landmark
instance.

A lot of possible density functions and their mixtures can
be used to approximate the descriptor distribution collected
from the training set. Examples of commonly used functions
are the Heaviside step function, the top-hat function, the
Gaussian, inverse Gaussian, Von Mises, and so on.

In this paper only two are used: the inverse Gaussian,
for the shape index descriptor, and the Gaussian distribution
for all the others. Examples of these functions superimposed
on the training data distributions of a descriptor value at a
landmark position can be seen in Fig. 12.

The framework that we have implemented is generic
regarding distribution modeling. The distribution of a particular
descriptor is manually provided as a parameter to the sys-
tem. The reason that we only used unimodal pdfs is that the
observed distributions over the training data look unimodal.
An enhancement to our system would be to select the appro-
priate distribution model from a pool of such models auto-
matically.

Gaussian (2 parameters: mean, μ, and standard deviation,
σ)

Inverse Gaussian (4 parameters: μ, σ, x0, direction, where
μ and σ are mean and standard deviation, as before, and x0

is the origin of descriptor values, x .)

123

Int J Comput Vis

 0

 5

 10

 15

 20

 25

 30

 35

 40

-0.1 -0.05 0 0.05 0.1 0.15

P
D

F

element 12 ; property H

Gaussian

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

P
D

F

element 12 ; property SI

Gaussian
Inverse Gaussian

(a) (b)

Fig. 12 Examples of parameterized probability density functions (computed from the mean and variance of training data) superimposed on the
observed distribution for the lower-lip landmark. On the left, the mean curvature descriptor (H) is shown. On the right, the shape index descriptor
(SI0,1) is shown

where x ′ = sign(direction).(x − x0)

The variance of this probability density function is given

as σ 2 = μ3

ξ
. If the observed mean and standard deviation of

the training data is (μ, σ), we compute the inverse Gaussian

parameter, ξ , as ξ = μ3

σ 2 .

4.2.2 Converting Descriptor Maps to Descriptor-Landmark
Score Maps

Computing descriptor maps is useful, especially if the posi-
tions of the targeted landmarks are the same as the posi-
tions of the local extrema over those maps. In general, this
is not the case, and the problem becomes the mapping of the
raw descriptor values via some function, where the function
has extrema that are coincident with the targeted landmark
positions.

For any vertex, vi , and any descriptor-landmark pair,
(d, λ), a score can be computed that can be thought of as the
relative likelihood that the landmark λ is at vertex vi given
the scalar raw descriptor value xd(i) computed at that vertex.
We use the term ‘relative’ because such scores are relative to
the maximum likelihood of the given landmark for the given
descriptor. These descriptor-landmark (DL) scores are in the
range (0–1), where the maximum score of 1 is attained only
if xd(i) is at the modal value of the modeled distribution for
landmark λ.

Thus we define DL-scores as:

sd
λ (i) = pdfd

λ(xd (i))

max
x

(pdfd
λ(x))

(11)

where pdfd
λ models the distribution of descriptor d for the

landmark λ, xd(i) is the raw value of descriptor d at ver-
tex vi , and the maximum probability density is taken over
the descriptor value variable, x .

In the case of a Gaussian distribution of mean μd,λ and
deviation σd,λ, max(pdfd

λ) is reached at μd,λ and we have:

sd
λ (i) = exp

(
− (xd(i) − μd,λ)

2

2σ 2
d,λ

)
(12)

Note that, in the case of the Gaussian distribution, which
we use most often, a DL-score is a function of the Maha-
lanobis distance (number of standard deviations) from the
mean of the modeled distribution. For example, Mahalanobis
distances of (0, 1, 2, 3) gives scores of (1, 0.607, 0.135,

0.011).
In Fig. 13 examples of DL-score maps are presented.

4.2.3 Dealing with Shape Histograms

Compared to scalar descriptors, shape descriptors based on
histograms are more difficult to deal with. Using the value
within each cell (histogram bin) as a scalar descriptor within
our framework is indeed computationally too expensive.
Therefore, a single scalar descriptor is computed from each
histogram.

To do this, the difference to the mean histogram of the tar-
get landmark is computed and projected onto a single scalar
value along a direction that is defined by a two-class LDA
problem. Here, one class is a set of neighboring vertices and
the other class is a set of non-neighboring vertices. For each
vertex, vi , the scalar descriptor generated from a local shape
histogram is computed as follows:

xd(i) = ωT
λ (x′

d(i) − x̄′
d,λ), (13)

123

Int J Comput Vis

Fig. 13 Examples of descriptor-landmark (DL) score maps for three descriptors, whose scores are computed relative to modeled distributions at
three landmarks

where x’d(i) is an M-dimensional feature vector of the his-
togram’s cell values at vertex vi , x̄′

d,λ is the mean fea-
ture vector learned at landmark λ and ωλ is the vector of
weights constituting the direction in M-dimensional fea-
ture vector space that best separates the two classes in the
above LDA problem. The scalar xd(i) is then treated in
the same way as any other scalar descriptor and is mapped
to a score in the range (0–1), as described in the previous
section.

While the use of more complex histogram comparison
techniques could be justified in terms of improved class
separation (for example, the earth mover’s distance Rubner
et al. 2000), they are too expensive in terms of computation

time for our application, as the number of operations is linear
in the number of mesh vertices and the number of targeted
landmarks.

4.3 Combining DL-Score Maps into a Single Landmark
Score Map

Most of our DL-score maps are highly correlated. Indeed,
most of them are based on descriptors derived from the prin-
cipal curvatures (k1 and k2). It is important for our machine-
learning approach to take this correlation into account when
determining a function or set of rules to combine our D DL-
score maps per landmark into a single score map, which we

123

Int J Comput Vis

Fig. 14 Examples of normalized landmark score maps for the L shapes of interest. The final keypoint score map, computed for the same subject,
is shown on the bottom right cell

call a landmark score map or L-score map. The following
subsections detail two approaches, LDA and AdaBoost, to
learn how to do this combination. Note that most appli-
cations of LDA and AdaBoost in the literature use their
outputs directly to assign class labels. In contrast, we use
these algorithms to generate a landmark score that is likely
to be high for a vertex that is in the vicinity of some-
thing that looks like a landmark and low otherwise. This
allows us to defer the classification to a discrete land-
mark label until later, when global, structural information is
introduced.

4.3.1 Linear Discriminant Analysis (LDA)

A first simple idea is to use linear combinations of DL-scores.
For a particular landmark, each of the D corresponding DL-
score maps are multiplied by a learned weight and, added
together, they form the L-score map.

Another way of viewing this is that the D DL-scores at
some vertex, vi , constitute a D-dimensional feature vector
which is projected down to a scalar, by forming a dot
product with a D-dimensional unit vector. Thus, if sλ is a
V -dimensional vector of such projected DL-scores that

123

Int J Comput Vis

(a)

(b)

(c)

Fig. 15 (a) Schematic representation of the two class distributions
inside the DL-score unit-hypercube for an ideal situation where the
classes are separable by a single continuous class boundary. (b) and (c)
Real capture of the two classes inside the DL-score hypercube for the
nose tip landmark projected along (b) the hypercube diagonal direction,
vector from (0, 0, . . . , 0) to (1, 1, . . . , 1) (for visualization), and (c) the
extracted LDA direction

represents an L-score map, we have:

sλ = Sλuλ (λ = 1 . . . L), (14)

where Sλ is a V × D matrix of DL-scores (each column
contains the values of a DL-score map) and uλ is the unit
vector of projection for landmark λ.

Note that L-score maps are normalized by shifting and
scaling so that they span the standard range (0–1).

The weights (in unit vector uλ) used to combine DL-score
maps are defined using LDA over a population of neigh-
boring and non-neighboring vertices, relative to the rele-
vant landmark. The population of neighboring vertices is
defined as those at a distance <5 mm from the specified
landmark on all facial meshes in the training set. The pop-
ulation of non-neighboring vertices is constituted of those
between 15 and 45 mm from the same landmark (see Fig. 7
for the upper-lip landmark). These empirical radii have been
selected to get two vertex populations of manageable size on
faces.

LDA applied to these two classes (neighboring and non-
neighboring vertices) returns the direction in D-dimensional
DL-score space that best separates the two sets.

As each DL-score is between 0 and 1, the feature vec-
tor for a given vertex is a single point in a D-dimensional
unit-hypercube. Non-neighboring vertices are expected to
have many scalar DL-scores close to zero. Figure 15 shows an
ideal representation of the two classes in the unit-hypercube
as well as real projections observed in the training process.
Examples of the resulting landmark score maps (L-score
maps) are shown in Fig. 14.

It is interesting to compare DL-score maps and L-score
maps. For example, the Gaussian-curvature, nasion DL-
score map in Fig. 13 (bottom row, central map), reveals a
ring of high (near 1.0) values around the ground truth nasion
position. This is a consequence of the subject having a higher
than average Gaussian curvature at his nasion and therefore
lower DL-scores in the center of the nasion area. However,
when multiple DL-score maps at the nasion are linearly com-
bined into a single L-score map, we have a single blob of
high values at the nasion, as seen in Fig. 14 (top row, central
map).

We note in passing that if multiple landmarks have similar
local structure, such as occurs with facial symmetry, we may
wish to exclude repeated local shapes from the set of non-
neighboring vertices. In effect, the training process would
need to be made aware of such repeated local structures
(e.g. the inner eye corners form a pair). Although such class-
formation processes are simple to implement, we think that
the improvements achieved will be small, and they are not
implemented in the work presented here.

4.3.2 AdaBoost

One limitation of the LDA method is that it assumes that the
two classes (neighboring and non-neighboring) can roughly
be separated by a hyperplane. If the classes are well sepa-
rated for some particular landmark, then this might be the
case, but Fig. 15 suggests that some class boundaries might
be better modeled by a hypersphere rather than a hyperplane.
If this is the case, then a non-linear technique may allow
us to extract and use even more discriminative information

123

Int J Comput Vis

from the set of DL-score maps. We selected the AdaBoost
technique6 because the online computation is fast enough
and because it has shown excellent performance over a wide
range of applications in Computer Vision and Pattern Recog-
nition over recent years, quite often giving state-of-the-art
results, a prime example being the 2D face detection system
of Viola and Jones (2004).

This method differs from the LDA approach in both
the offline training process and online keypoint detection
process, as follows.

– When training the system using the two classes (neigh-
boring and non-neighboring vertices), a boosting tech-
nique is used to learn weak classifiers. This is described
in Sect. 4.3.4.

– In the online part, these weak classifiers are used instead
of the LDA weights, to obtain a landmark score (L-score)
for each vertex. This is described in Sect. 4.3.5.

4.3.3 Boosting Technique

The boosting technique used here is simple. Each scalar DL-
score is treated independently and each weak classifier is
composed of the following:

– the index, d, of the descriptor, i.e. the dth element of the
DL-score feature vector;

– a threshold T splitting the DL-score’s 1D scalar space
into two;

– a direction dir -1 (t ≤ T) or +1 (t > T) stating which
side of the space corresponds to the ‘match’ class, and

– a scalar, α, describing the weight associated with this
single weak classifier.

Such weak classifiers are often termed decision stumps
and they partition the DL-score vector space (a feature vector
space) with a set of orthogonal hyperplanes.

4.3.4 Offline AdaBoost Training

For the training of the weak classifiers, a simple Adap-
tive boosting technique (or AdaBoost Freund and Schapire
1997) is used. At each additional iteration, the weights are
assigned to the training data according to the classification
error using the existing weak classifiers. Each dimension of
the D-dimensional DL-score space is divided in small steps.
The triplet (d/T/dir) that best classifies the training set with
the new weights is selected as the new classifier. To search the

6 Note, however, that our framework allows us to ‘plug in’ and use any
classifier as an L-score generator. Switching to another technique is
straightforward, if there is some advantage to this, in terms of the class
of meshes that are being processed.

threshold along one DL-score dimension, a simple two-level
coarse-to-fine approach is used. The range of observed val-
ues [min, max] is divided into 200 steps. Once the best step
k is found using this discretization, the range [k −1, k +1] is
divided again in 50 steps. The new best step k′ that is found
is used as the candidate threshold for this dimension.

The weight of a current best classifier is defined relative
to the current error, e, in classification:

α = 1

2
log

1 − e

max(e, ε)
. (15)

where ε is a small constant. The influence of each input point
is updated at each iteration by reducing the weights of the well
classified points and retaining the weights of badly classified
points, such that:

wi j =
{

wi j . exp(−α) if good classification
wi j otherwise.

(16)

4.3.5 Online Landmark Score Generation using AdaBoost

For the online part of the process, each input vertex
has a vector of DL-scores, each DL-score corresponding
to a descriptor-landmark pair. The scalar landmark score
(L-score) for each vertex is computed from the DL-score
vector as shown in Algorithm 1.

Algorithm 1: Boosting L-score Computation.
Data: Vector of DL scores, sλ(i); weak classifiers, W
Result: scalar Lscore
Lscore = 0.0
foreach weak classifier (d, T, dir, α) in W do

if (dir · sd
λ (i) > dir · T) then

Lscore + = α
else

Lscore + = −α

return 1+Lscore
2

Instead of using the sign of the result as a binary classifica-
tion (−1 or +1), the output score is retained as a continuous
value and remapped into the interval (0–1).

We emphasize that the optimal combination of descriptors
for keypoint detection is not the same as the optimal com-
bination of descriptors for locally discriminating between
different landmark shapes: each of these learning processes
requires a different set of vertices in the training data.

4.4 Keypoints from L-score Maps

In the L-score map, vertices with higher values (colored
blue) are more likely to be good keypoints than the ones
with lower values (colored red). However if a simple thresh-
old was applied to the map, the system would detect areas
(blobs) of vertices instead of a sparse set of points. Here, local

123

Int J Comput Vis

maxima are computed using a neighborhood of fixed radius
(15 mm). Vertices that have a maximum value within this
neighborhood are selected as keypoints. A threshold Tk can
help eliminate local maxima that are too weak. The choice of
Tk mainly influences the number of keypoints detected and
therefore the computational cost of the matching process. In
these experiments Tk is fixed to 0.85.

Given that we have a set of L landmark score maps, there
are a number of different ways in which we can extract key-
points. The approach employed depends on how keypoints
are to be processed to generate landmarks, in particular, how
configural information is to be used. Here we describe two
approaches that we have investigated and Fig. 16 compares
keypoints using these two techniques.

4.4.1 Keypoints from the Keypoint Score Map

A first approach is to combine all of the L = 14 L-score maps
into a single map, which we call an keypoint score map, by
taking, at every vertex, the maximum normalized landmark
score over all L L-score maps. In this technique, we com-
pletely ignore which L-score map the maximum came from.
It may seem counter-intuitive to throw this landmark infor-
mation away, but the L-score maps are the result of learning
how to distinguish vertices from their neighbors for a set of
targeted local shapes, not how to optimally distinguish one
targeted local shape (landmark shape) from another.

An important advantage is that the resulting keypoint set
is very sparse, because it does not allow two keypoints, gen-
erated by different landmark target shapes, to be too close
together. Keypoints generated in this way are the ones used
to evaluate our framework in Sect. 5, using the metrics of
landmark retrieval rate and repeatability. An example of a
keypoint score map can be seen in the last panel of Fig. 14
and and the keypoints generated from such map are shown
in Fig. 16(top).

4.4.2 Keypoints from Landmark Score Maps

An alternative approach is to employ the information regard-
ing which L-score map a particular keypoint came from. The
simplest way to do this is to detect local maxima on the
individual L-score maps for every landmark. Thus we can
immediately generate a landmark candidate, as each keypoint
is associated with the L-score map that it has been extracted
from and thus can be associated with a single candidate label.
It is interesting to ask whether such keypoint information
can be used within a simple model-fitting approach in the
assignment of final landmark labels. In Sect. 6, we address
this problem and we find that we are able to get good land-
marking performance.

Note that a problem with this approach is that the number
of landmark candidates generated will increase linearly with

Fig. 16 Examples of extracted keypoints: (top) from the final keypoint
score map (70 keypoints) and (bottom) directly from the landmark score
maps (198 keypoints)

L , the size of the dictionary of targeted landmarks. This is
not usable for other configural matching approaches, such as
graph and hypergraph matching techniques, where the num-
ber of edges and hyperedges become intractable to process.
An example of keypoints generated directly from the L-score
maps is given in Fig. 16 (bottom).

5 Keypoint Detection Results

In this section, we first describe two configurations that our
system was tested with: a multi-scale configuration and a
single-scale configuration. We then describe keypoint detec-
tion results associated with our LDA-based learning system
and our AdaBoost-based learning system.

5.1 System Configurations

For all results presented in this paper, 10 descriptors were
selected including two histogram descriptors:

123

Int J Comput Vis

– First principal curvature (k1)
– Second principal curvature (k2)
– Gaussian curvature (K)
– Mean curvature (H)
– Shape Index (SI)
– Log Curvedness (LC)
– Distance to Local Plane (DLP)
– Local Volume (VOL)
– Spin Image Histogram (SIH)
– Spherical Histogram (SH)

Using these descriptors, two different configurations are
set up:

– Configuration 1: The histogram descriptors are defined
with 4 different bin sizes (from 2.5 to 10 mm). The others
are defined with 5 different neighborhood sizes (5, 15, 30,
45 and 60 mm).

– Configuration 2: All descriptors are computed at only one
scale. The neighborhood size is set at 15 mm for all scalar
descriptors, and the bin size at 5 mm for the histogram
descriptors.

In total, configuration 2 uses 10 descriptor maps leading
to 140 descriptor-landmark (DL) score maps which is far less
than configuration 1 that requires 672 DL-score maps. The
neighborhood and bin sizes have been set to values informed
by previous research results (Creusot et al. 2011).

5.2 LDA Results

Figure 17 shows examples of final keypoint score maps com-
puted for configuration 1 and 2 using LDA-based linear
combination of DL-scores and the corresponding detected
keypoints. A visual check of these results gives a lot of indi-
cations about the system and its drawbacks. The scan in the
second column, for example, contains lots of false positive
keypoints in the hair areas. However, in order to evaluate the
results for the whole dataset, quantitative cost functions have
to be used. We now present results for landmark retrieval
rates and keypoint repeatability, using keypoints generated
from keypoint score maps.

5.2.1 Landmark Retrieval

To evaluate the rate at which keypoints are localized near
defined landmarks, the percentage of face meshes in which a
keypoint is present in a sphere of radius R from the manually
labeled landmark is computed. As there is no clear definition
about what distance error should be considered for a match,
this percentage is computed for an increasing acceptance
radius ranging from R = 2.5 mm to R = 25 mm. Results
for configuration 1 and 2 are given in Fig. 18. With config-

uration 2, at 10 mm, the nose tip is present in the detected
keypoints 99.47 % of the time, and the left and right inner
eye corners in 90.50 and 92.56 % of the cases. The figure
does indicate that some landmarks (e.g. nose tip) are much
stronger than others (e.g. mouth corners) in terms of their
retrieval rate. That is not to say weak landmarks should be
avoided altogether, because in some query meshes, only weak
landmarks will be present.

In other words, our method will not succeed in detecting
all potential landmarks in all facial meshes. However, it aims
to provide an initialization for further face processing that
doesn’t rely on a small, specific set (e.g. triplet) of target
landmarks. In Fig. 19, it can be seen that the mean number
of correctly selected landmark candidates is around 12 (of
a possible 14) for a radius of 10 mm. This illustrates a sig-
nificant benefit our approach: by detecting more landmarks
with no sequential dependencies between those landmarks,
we decrease the single-point-of-failure risk that many candi-
date landmark selection systems often have.

5.2.2 Repeatability

The intra-class (same subject identity) repeatability is mea-
sured on the FRGC v2 dataset for which registration of the
faces to a common pose has been computed using the Iter-
ative Closest Point method (ICP Besl and McKay 1992) on
the cropped meshes. The transformation matrices describ-
ing these registrations are available on the first author’s web-
page.7 For each pair of faces of the same subject, the two sets
of keypoints are cropped and registered to a common frame
of reference. The proportion of points in the smallest set that
have a counterpart in the second set at a distance R is com-
puted. The repeatability using configuration 1 and 2 is given
in Fig. 20 and compared with the repeatability of the hand-
placed landmarks. It can be seen that at 10 mm the proportion
of repeatable points is around 85 % (configuration 1) and
75 % (configuration 2) on average, whereas for hand-placed
landmarks (the best performance that we could expect) is
around 96 %. As expected, our system works better with
more descriptors, because it can effectively ignore correla-
tions. However, as more and more descriptors are added, we
get to a situation where there are diminishing returns for the
additional computation involved. Therefore, configuration 2,
which has fewer descriptors, is used in the following section,
to make our AdaBoost training computable in a reasonable
amount of time and the overall system faster.

5.3 AdaBoost Results

In this section, we compare the LDA-based DL-score
combination approach to the non-linear DL-score com-

7 http://www.cs.york.ac.uk/~creusot.

123

http://www.cs.york.ac.uk/~creusot

Int J Comput Vis

Fig. 17 Examples of extracted keypoints on faces from the FRGC v2
dataset using our multi-scale system (configuration 1, upper two rows)
and our single-scale system (configuration 2, lower two rows). For each

configuration, the first row shows the final keypoint score map where
vertices colored blue represent the highest scores while, in the second
row, the detected keypoints are shown

bination technique using AdaBoost. All results here are
using the DL-score maps computed with configuration 2
(i.e. single local neighborhood scale and histogram bin
size).

5.3.1 Number of Classifiers

A study of the variation of the number of weak classifiers
on the training set shows that a plateau is reached relatively

123

Int J Comput Vis

 80

 85

 90

 95

 100

 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 M

at
ch

Matching Acceptance Radius (mm)

00
01
02
03
04
05
06
07
08
09
10
11
12
13

 80

 85

 90

 95

 100

 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 M

at
ch

Matching Acceptance Radius (mm)

00
01
02
03
04
05
06
07
08
09
10
11
12
13

(a) (b)

Fig. 18 Matching percentage per landmark (0–13) with an increasing matching acceptance radius on the FRGC v2 test set. (a) using all descriptors
(Configuration 1), (b) using a subset of descriptors (Configuration 2)

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25N
um

be
r

of
 M

at
ch

ed
 L

an
dm

ar
ks

Matching Acceptance Radius (mm)

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25N
um

be
r

of
 M

at
ch

ed
 L

an
dm

ar
ks

Matching Acceptance Radius (mm)

(a) (b)

Fig. 19 Number of matching landmarks per file on the test subset of the FRGC v2 database. (a) LDA-based learning using all descriptors
(Configuration 1). (b) LDA-based learning using a single-scale subset of descriptors (Configuration 2)

quickly (see Fig. 21). A cross validation on the training set
showed that an upper limit on the number of classifiers is
not really important: the system doesn’t seem to over-fit the
training data even with 160 classifiers (compared to the 10
descriptors used). This can be explained by the fact that
the classifiers can be very similar to each other within the
AdaBoost technique. In our experiment we usually used 10
or 20 classifiers for each landmark shape of interest.

5.3.2 Computing the Separation Between L-Score
Distributions

Both the LDA and AdaBoost methods produce L-scores
closer to zero for non-neighboring vertices and closer to one
for neighboring vertices. An ideal output when plotting the
distributions of those L-scores would be to have a sharp peak
at zero for non-neighboring and a single spike at one for
neighboring vertices. Of course, this is not the case and often
the two distributions will overlap. In order to compare quan-
titatively the two classification techniques, a cost function
to measure how well it separates the two classes is needed.
Given two distributions densities D0 and D1 (respectively

non-neighboring and neighboring) over a domain (0–1) how
can the separation between the two distributions be quanti-
fied? There are many possible solutions to this simple prob-
lem. In our particular case, the distribution is not necessarily
smooth or continuous, therefore looking at the problem at
one threshold is not meaningful.

For every threshold t set between (0–1), the following can
be computed:

True Negative Rate: TNR(t) = ∫ t
0 D0(x) dx

False Positive Rate: FPR(t) = ∫ 1
t D0(x) dx

False Negative Rate: FNR(t) = ∫ t
0 D1(x) dx

True Positive Rate: TPR(t) = ∫ 1
t D1(x) dx

(17)

Obviously our aim is to be able to determine which methods
are able to give low FNR and FPR values. By integrating over
all possible t , a global notion of the intersection between the
two distributions is defined:

I (D0, D1) = ∫ 1
0 FNR(t) · FPR(t) dt

= ∫ 1
0 (

∫ t
0 D1(x) dx).(

∫ 1
t D0(x) dx) dt

= ∫ 1
0

∫ t
0 D1(x).(1 − D0(x)) dx dt .

(18)

123

Int J Comput Vis

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30P
er

ce
nt

ag
e

of
 r

ep
ea

ta
bl

e
po

in
ts

Matching Acceptance Radius (mm)

Hand-placed Landmarks
Configuration 1
Configuration 2

Fig. 20 Percentage of points repeatable after registration at an increas-
ing matching acceptance radius. The measure of the human hand-placed
landmarks is used as a reference

Fig. 21 Variation of the retrieval rate with a 10 mm error acceptance
radius for different numbers of weak classifiers on the training set

This metric can be used to compare LDA and AdaBoost
approaches and it is very explicitly related to how well some
landmark can be separated from its surrounding area.

It is possible to use a simpler measure of distribution inter-
section in place of this metric, for example the Bhattacharyya
distance (Choi and Lee 2003), which is the integral of the
square root of the product of the two distributions and lies in
the range (0–1).

5.3.3 Comparisons of AdaBoost with LDA

A first way of comparing the our LDA-based system with
our AdaBoost-based system is to see how well each of them
separate the two classes used in training. Figure 22 shows
the different scoring results of both LDA and AdaBoost
methods when trying to differentiate neighboring and non-
neighboring vertices. It can be seen that the neighboring
class is much more scattered with the LDA scoring than with
AdaBoost. In Fig. 23 the intersections of the density distri-
butions are compared for each of the L landmark shapes of
interest. In all cases, AdaBoost performs better than the LDA
with this intersection metric.

The two methods can also be compared when looking at
the performance of keypoint detection. In terms of repeatabil-
ity and number of retrieved landmark positions both methods
give similar results (see Fig. 24a, b). However, when looking
at single landmark retrieval rates (see Fig. 25) the AdaBoost
method seems to perform better for the same set of descrip-
tors on some landmarks and less well on others. In Fig. 26
we see that AdaBoost seems to work better for the nasion,
nose and mouth corners, while LDA works a lot better for
the subnasal and upper lip landmarks.

Of course, AdaBoost is more likely to gain in accuracy
with a bigger training set than the LDA methods. But these
results indicate that improvement of the system is still more
likely to come from the use of more and better descriptors
than from the use of a more sophisticated DL-score combi-
nation mechanism. Indeed, when comparing Figs. 25 and 18,
we observe that the gain in performance linked to the DL-
score combination method is minor compare to the gain of
using more descriptors at multiple scales.

If more descriptors are used, the price in terms of com-
putation can grow rapidly. We think that a good way to deal
with this would be to look at dynamic scoring of the vertices
using decision trees, as used in Shotton et al. (2008). At each
node in the tree, only the most discriminative descriptor for
this sub-tree would be computed.

6 Application to Landmarking

In this section, a landmarking system based on our keypoint
detection framework is presented. Results are compared with
state-of-the-art 3D face landmarking systems on the FRGC
v2 dataset. We also show results on a more challenging
dataset, the Bosphorus dataset (Savran et al. 2008).

6.1 Workflow

The landmarking framework is based on the keypoint detec-
tion system. The first steps are exactly the same (see Fig. 27).
However, this time, the L-score maps are not combined into
a final keypoint score map. Rather, the keypoints are detected
on each L-score map separately. This leads to more keypoints,
but with the advantage that only one label is associated with
each landmark candidate (see Sect. 4.4). The final labels are
selected by fitting a scale adapted rigid model of the targeted
landmarks to the query using the RANdom SAmple Consen-
sus (RANSAC) approach. The output landmarks are defined
as the projection of the registered landmark model’s points
onto the face. The model fitting is not only adding the label
but also is adjusting the position of the points. This has the
advantage of providing landmarks even in face regions that
have missing or spurious data.

123

Int J Comput Vis

Fig. 22 Examples of the differences in L-scores using the LDA method
(left column) and the AdaBoost method (20 weak classifiers, right col-
umn) for two landmarks: nose (upper four figures) and right mouth
corner (lower four figures). The upper row of figures for each landmark
show the L-score features of the two classes in a basis composed of the
LDA-extracted direction and an arbitrary orthogonal direction with the

color mapping showing the L-scores normalized to (0–1). The lower
figures for each landmark represent the density of the neighboring and
non-neighboring classes through the (0–1) scoring spectrum. The dis-
tributions show that the nose-tip is much easier to separate from its
neighbors than the mouth corner, as expected

123

Int J Comput Vis

Fig. 23 Comparison by landmark of the intersection between neigh-
boring and non-neighboring L-score distributions. AdaBoost is better at
separating the two classes than LDA (the intersection is closer to zero)

The threshold for keypoint detection on the landmark
score maps is set to 0.75 to reduce the number of false nega-
tive landmark candidates and therefore speed up the matching
process.

6.2 Model-fitting

6.2.1 Scale-adapted Rigid Registration

In order to establish a one-to-one correspondence between
the query landmark candidates and the model landmarks,
we need to use configural information related to the global
geometry of the face. Here the simplest possible approach
is chosen: to register a scale-adapted rigid model of the face
onto the query keypoints. A registration between two sets of
labeled points is a geometric rigid transformation that can be
represented as a 4×4 transformation matrix T, with 7 degrees
of freedom (3 for rotation, 3 for translation and one for scale).
In our case, the query keypoints only have one candidate label
each. Therefore finding the best registration is equivalent to
finding the best subset of keypoints in the query, i.e. those that
best support a specific transformation. To do so a RANdom
SAmple Consensus (RANSAC) approach is used. RANSAC
is a model fitting meta-algorithm introduced in Fischler and
Bolles (1981) that consists of constructing a set of points

(a) (b)

Fig. 24 AdaBoost-based learning system in configuration 2 (single-scale): a number of retrieved landmarks, b repeatability for an increasing
matching acceptance radius on the FRGC v2 test subset

(a) (b)

Fig. 25 Matching percentage per landmark (0–13) with an increasing matching acceptance radius on the FRGC v2 test set. AdaBoost gives better
results than LDA for the same configuration (configuration 2)

123

Int J Comput Vis

Fig. 26 Retrieval error rate for the LDA and AdaBoost DL-score combination methods for the 14 landmarks

Fig. 27 Workflow of the landmarking system.

Fig. 28 Landmark retrieval rate for the 14 landmarks

that agree on fitting the same parameterization of a model.
To find the parameterization with the largest number of sup-
porting keypoints, Ns sets of keypoint triplets are randomly
sampled to instantiate the model. In our case the model is a
scale-adapted rigid model of the target landmarks and its
parameterization is the transformation matrix T. The ‘con-
sensus’ function of the algorithm decides whether a new point
agrees with the current solution by enforcing two conditions:

– the distance between the query point and its correspond-
ing transformed model landmark should be under a given
threshold

– the dot product between the normals of the query and
model points should be above a given threshold.

If both conditions are true, the correspondence is added to
the consensus and a new transformation T is computed by
using a linear least-squares method.

6.2.2 Dealing with Symmetry

A known problem with our approach is that the local shapes in
our dictionary can be correlated, especially when associated
with symmetric regions. For example, a keypoint detected
near the outer right corner of the eye has big chance of being
a landmark candidate for its left counterpart. This can lead
to ‘upside-down’ face detection, or simply to imprecision in
the global registration as some points might be discarded in
the fitting process. The RANSAC solution depends on a list
of pairs (point, label) given as inputs. As the quality of the
labels is uncertain at this point, running the RANSAC algo-
rithm with different inputs can help cover a bigger search
area. Selecting the best RANSAC solution among several

123

Int J Comput Vis

Table 1 3D face landmarking systems that are tested on more than 4000 models from the FRGC v2 dataset

Results using the same metric are colored the same. When a comparison is possible, results in bold font highlight the best system score for the
given metric

can easily be done by looking at mean projection distance to
the mesh.

Running RANSAC several times with different seedings,
can only improve the chances of finding the best match. How-
ever, designing meaningful seedings is not always easy. In
this experiment, RANSAC is run twice with two different
starting sets of correspondences. One where the keypoints are
associated with the one label derived from the score maps,
and a second where the keypoints are associated to one or
two labels depending on whether the initial label belongs to
a symmetric pair. One of the two transformations is selected
as the best if its corresponding projection distance to the sur-
face mesh is minimal.

On the 4,750 scans from the test set on the FRGC, 2,564
obtain better fitting with the first seeding, while 2,186 prefer
the second. In most cases, the difference between the mean
projection distances is small. In 99.31 % of the cases, the
difference between the two solutions is under 2 mm.

6.2.3 Projection of Landmarks onto the Query Mesh

Once the transformation, T, has been defined, all model land-
marks are associated to the closest vertices on the query mesh.
Those positions and associated labels are defined as detected
landmarks and are the outputs of our system.

6.3 Landmarking Results

The following tests have been executed using configuration 2
(single-scale descriptors) of our keypoint detection system.
The landmarks obtained using our technique can be down-
loaded on the first author’s webpage8 to help future results
comparison. Figure 28 shows the landmark retrieval rate for
an increasing acceptance radius.

8 http://www.cs.york.ac.uk/~creusot.

123

http://www.cs.york.ac.uk/~creusot

Int J Comput Vis

Fig. 29 Examples of
landmarking in cases with
missing nose where expert
systems usually fail (model
04814d22 and 04505d222 of the
FRGC). Our system doesn’t
need the nose tip to be correctly
detected in order to find the
other landmarks (landmark
independence). Blue points
represents our results. Green
points represent the ground truth
(Color figure online)

Fig. 30 Examples of localizations on rotated meshes. Our system only uses relative vertex positions and normals and is therefore translation and
rotation invariant (pose invariant)

Landmarking results are often difficult to compare due
to the variety of datasets, preprocessing and performance
metrics. Obviously, the bigger the dataset the more mean-
ingful the results are. Here our method is compared with
previous studies that give results on at least 4000 models
from the FRGC v2 dataset. In Table 1, comparison to state-
of-the-art methods is presented at the most commonly used
acceptance radii for human face landmarking (10, 12, 15 and
20 mm).

Our system does not outperform all recent expert system
techniques in terms of precision (at 10 mm), but does so
in terms of robustness, while also presenting some unique
capabilities. Firstly, the number of discrete failures is zero.
The system always succeeds to coarsely register the face and
find some correct landmarks. Indeed 100 % of the models
have at least three points retrieved at 20 mm. Secondly, our
system is highly generic, allowing us to detect L (14) local
shapes corresponding to targeted landmarks using exactly the
same method for each of them. Thirdly, due to the landmark
independence of the system and the non-sequentiality of the
search, our system has no trouble dealing with face scans

with missing facial features, for example when the nose-
tip is missing (see Fig. 29). Most existing techniques will
fail in such cases, as this landmark presence is required in
the query scan. This confers to our system a great advan-
tage when dealing with occlusions, as observed in real life
scenarios (for example, those that include pose variation,
occlusions by hands, cell phone, glasses, and so on). In addi-
tion, given that we avoided any pose-dependent assumptions,
our system is invariant to rotation of the 3D surface, as seen
in Fig. 30. Figure 31 shows distance errors relative to the
manual mark up for the FRGC v2 test scans, while exam-
ples of detected landmarks on this dataset are shown in
Fig. 32.

The landmarking experiment has also be run on the
Bosphorus dataset (Savran et al. 2008). This dataset hasn’t
been used very often in the literature and is therefore less
convenient to compare results with existing techniques. How-
ever it is far more challenging in terms of non-standard pose
capture with scans presenting large pose variation as well as
occlusions. Results are given on this dataset for two main
reasons:

123

Int J Comput Vis

Fig. 31 Distance error for the 14 landmarks. The candle stick repre-
sents the min/Q1/median/Q3/max values. The plus sign represents the
mean

– to highlight some limitations of our technique that could
not have been detected with the FRGC dataset alone;

– to provide enough data to allow results comparison with
this dataset in future research.

Table 2 contains the landmark retrieval rates for the dif-
ferent parts of the dataset, as well as for the whole set. Scans

of yaw rotation marked as 90◦ were not used due to their
poor associated descriptor maps (higher resolution might be
necessary to treat those cases). Moreover, scans marked as
IGN (ignored) in the dataset have also been discarded. In
total we tested 4,339 face scans from the Bosphorus dataset.
Figure 33 shows examples of landmark localization on some
of these scans.

6.3.1 Limitations

A limitation of our system is that it relies heavily on local
descriptors. Therefore, the robustness of the system strongly
depends on the robustness of the local descriptors used. If
those are not robust to occlusion the local DL-scores might
be spurious and detection quality will suffer. For exam-
ple, in a profile view, when a vertex is near the border
of the mesh, its local neighborhood is incomplete and the
descriptors computed on this neighborhood are likely to be
noisy. It might be interesting to develop different special-
ized descriptors that can detect keypoints near the border
of the mesh using, for example, extracted 2D curves along

Table 2 Results on the more challenging Bosphorus dataset using our landmarking method

The training set is composed of 99 faces from the neutral subset of the dataset. The results are provided for the four most commonly used acceptance
radii in landmarking to facilitate future results comparison

123

Int J Comput Vis

Fig. 32 Examples of
landmarks detected by our
system. Landmarks are defined
by the positions of a
scale-adapted landmark model,
L, which is a set of L (position,
label pairs) for an average face
mesh. The model L is equipped
with a triangulation (i.e. it is
displayed as a graph) purely to
aid visualization. The input face
meshes are taken from the
FRGC v2 dataset

the direction of occlusion. Combining the DL-scores using
these new descriptors can easily be done within our frame-
work.

In Fig. 34, the worst case landmark localizations in terms
of the three global registration metrics are presented for the

FRGC test set. When registering the ground-truth and the
localized landmarks, the transformation is decomposed by
steps into a mean translation (aligning the centroids), a scale
change (by scaling the mean edge length) and a final rota-
tion, when translation has been canceled and scale equalized.

123

Int J Comput Vis

Fig. 33 Examples of landmark localization on the Bosphorus dataset. Blue points are our results, green points are the ground truth (Color figure
online)

The mean error in translation is represented by τ in millime-
ters. The scale difference is represented by the ratio ρ of the
ground truth to the detected mean length. The final rotation
error is defined as the angle θ between the unit-quaternion
representing the computed rotation and the one representing
the identity. Figure 35 shows the distribution of those errors
for the FRGC test set.

A limitation of our framework for landmarking is that the
matching technique used is very naive and employs a rigid
registration of the face to a common model. It is straightfor-
ward to build a more shape-adapted model using principal
component analysis (PCA) and this may give us an improved
landmarking system in terms of the precision of the land-
mark localizations. However, it is likely that detection of
the chin landmark with the mouth open will still be difficult
(our current system always fail to detect the chin landmark
when the mouth is open). Future work could look at graph
and hypergraph matching techniques to find a softer assign-
ment between the keypoint and the target landmark labels
(e.g. Creusot et al. 2010). Figure 36 shows examples of dis-
crete failure on the Bosphorus dataset, where a correct coarse

registration is not found by the system. A discrete failure is
declared if the rotation error θ is above 10◦ (∼ 0.17 rad) or
if the translation error τ is above 20 mm.

6.4 Computation Time Performance

Timing data was gathered on a standard dual-core (Intel Core
2 Duo Processor) PC running at 3 GHz and with 4 GB of
memory. The total computation time per query scan on the
FRGC dataset is 1.18 s for meshes having 3,232 vertices on
average. Most of the time is spent on the keypoint detec-
tion (0.97 s). The most computationally expensive part of
this is the histograms computation 0.70 s. The neighbor-
hood computation costs 0.11 s while the principal curvatures
computation takes 0.06 s on average. Big improvements in
terms of computational speed have been achieved by modi-
fying the curvature computation and using a Normal solver
instead of SVD for the cubic surface fitting. However some
parts of the framework remain computationally expensive.
The histogram computation for every vertex takes more time
than all the rest put together. Indeed, the complexity of the

123

Int J Comput Vis

Fig. 34 Four worst cases in the FRGC test set by global registration metric: largest angle, smallest scale ratio, largest scale ratio, largest mean
translation

Fig. 35 Distribution of the global registration errors on the FRGC test set

Fig. 36 Examples of discrete failures on the Bosphorus dataset. The 17 failures detected on the 4,339 scans (0.39 %) are mainly due to occlusion
(7 scans) and rotation (six ‘yaw’ and one ‘pitch’ scans). The three remaining failures are on scans that show exaggerated facial expressions

naive algorithm used to get the histograms is quadratic in
the number of vertices. The speed can be improved by using
better structures for locality retrieval, for example an octree
structure. The computation of DL-score and landmark score
maps is performed under 0.03 s. The final matching using
RANSAC takes 0.18 s with 130 landmark candidates per
face on average.

The total computation time per input scan on the Bospho-
rus dataset was 0.55 s for meshes having 1,879 vertices on
average.

7 Conclusions

A simple method has been proposed to deal with keypoint
detection and landmarking of learned local shapes. This
method requires landmarks on training meshes to be man-
ually marked up with a set of landmarks defined in a land-
mark model. One can think of this landmark model as being
augmented by learned keypoint detector functions, fλ, (one
per landmark), and this can then be used to automatically
landmark unseen query meshes.

123

Int J Comput Vis

A flexible aspect of our method is that it doesn’t assume
that detected points on the mesh should have an extremal
value over a descriptor map. Instead, it assumes that the
matching score of this descriptor against a learned distrib-
ution should be maximal.

While other techniques are landmark-dependent, our can
be be applied to any shape of interest as long as training
is provided. The same method is used to detect the nose,
an eye’s corner or the chin. We detected 14 facial features,
while expert system methods are usually limited to a few
salient features (see Table 1).

While being more fuzzy (many-valued) compared to
expert system methods, we believe that this kind of approach
is necessary to deal with uncontrolled input data. In particu-
lar, it is more likely to be successful for non-cooperative face
preprocessing where there are great uncertainties about what
is present in the query scan.

In our opinion, the main gain in performance in the future
will come from adding new local descriptors that better deal
with occlusions and profile views, leading to less ambiguous
keypoints. Local refinement of coarse landmark localization
will also be essential to gain precision and high retrieval rates
at low acceptance radii.

References

Alyuz, N., Gokberk, B., & Akarun, L. (2010). Regional registration
for expression resistant 3-d face recognition. IEEE Transactions
on Information Forensics and Security, 5(3), 425–440. doi:10.1109/
TIFS.2010.2054081.

Ben Azouz, Z., Shu, C., & Mantel, A. (2006). Automatic locating of
anthropometric landmarks on 3d human models. In Third interna-
tional symposium on 3D data processing, visualization, and trans-
mission (pp. 750–757, 14–16). doi:10.1109/3DPVT.2006.34.

Berretti, S., Bimbo, A. D., & Pala, P. (2010). Recognition of 3d faces
with missing parts based on profile networks. 1st ACM workshop
on 3D object. Retrieval (ACM 3DOR’10) (pp. 81–86). doi:10.1145/
1877808.1877825.

Besl, P., & McKay, N. (1992). A method for registration of 3d shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(2), 239–256. doi:10.1109/34.121791.

Boyer, E., Bronstein, A. M., Bronstein, M. M., Bustos4, B., Darom,
T., Horaud, R., et al.. (2011). Shrec 2011: robust feature detection
and description benchmark. Eurographics workshop on 3D object.
Retrieved. doi:10.2312/3DOR/3DOR11/071-078.

Castellani, U., Cristani, M., Fantoni, S., & Murino, V. (2008). Sparse
points matching by combining 3d mesh saliency with statistical
descriptors. Computer Graphics Forum, 27(2), 643–652. doi:10.
1111/j.1467-8659.2008.01162.x.

Chang, K. I., Bowyer, K., & Flynn, P. (2006). Multiple nose region
matching for 3d face recognition under varying facial expression.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(10), 1695–1700. doi:10.1109/TPAMI.2006.210.

Choi, E., & Lee, C. (2003). Feature extraction based on the bhat-
tacharyya distance. Pattern Recognition, 36(8), 1703–1709. doi:10.
1016/S0031-3203(03)00035-9.

Colbry, D., Stockman, G., & Jain, A. (2005). Detection of anchor points
for 3d face verification. In IEEE computer society conference on

computer vision and pattern recognition—workshops, 2005. CVPR
workshops (pp. 118–118, 25–25). doi:10.1109/CVPR.2005.441.

Creusot, C. (2011). Automatic landmarking for non-cooperative 3D
face recognition. Ph.D. thesis, University of York. http://etheses.
whiterose.ac.uk/2274/.

Creusot, C., Pears, N., & Austin, J. (2010). 3D face landmark labelling.
In Proceedings of the ACM workshop on 3D object retrieval. ACM,
3DOR ’10 (pp. 27–32). doi:10.1145/1877808.1877815.

Creusot, C., Pears, N., & Austin, J. (2011). Automatic keypoint
detection on 3d faces using a dictionary of local shapes. In 2011
International conference on 3D imaging, modeling, processing, visu-
alization and transmission (3DIMPVT) (pp. 204–211). doi:10.1109/
3DIMPVT.2011.33.

D’Hose, J., Colineau, J., Bichon, C., & Dorizzi, B. (2007). Precise
localization of landmarks on 3d faces using gabor wavelets. In First
IEEE international conference on biometrics: theory, applications,
and systems, 2007. BTAS 2007 (pp. 1–6). doi:10.1109/BTAS.2007.
4401927.

Dibeklioglu, H., Salah, A., & Akarun, L. (2008). 3d facial landmarking
under expression, pose, and occlusion variations. In BTAS08 (pp.
1–6). doi:10.1109/BTAS.2008.4699324.

Faltemier, T., Bowyer, K., & Flynn, P. (2008). Rotated profile signatures
for robust 3d feature detection. In 8th IEEE international conference
on automatic face gesture Recognition, 2008. FG ’08 (pp. 1–7, 17–
19). doi:10.1109/AFGR.2008.4813413.

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6), 381–
395. doi:10.1145/358669.358692.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic general-
ization of on-line learning and an application to boosting. Journal
of Computer and System Sciences, 55, 119–139. doi:10.1006/jcss.
1997.1504.

Goldfeather, J., & Interrante, V. (2004) A novel cubic-order algorithm
for approximating principal direction vectors. ACM Transactions on
Graphics, 23(1), 45–63. doi:10.1145/966131.966134.

Itskovich, A., & Tal, A. (2011). Surface partial matching and applica-
tion to archaeology. Computers & Graphics, 35(2), 334–341. doi:10.
1016/j.cag.2010.11.010.

Johnson, A., & Hebert, M. (1999). Using spin images for efficient object
recognition in cluttered 3d scenes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(1), 433–449.

Kim, J.-S., & Choi, S.-M. (2009). Symmetric deformation of 3d face
scans using facial features and curvatures. Computer Animation and
Virtual Worlds, 20, 289–300. doi:10.1002/cav.v20:2/3.

Lowe, D. G., (2004). Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2), 91–110.
doi:10.1023/B:VISI.0000029664.99615.94.

Max, N. (1999). Weights for computing vertex normals from facet
normals. Journal of Graphics Tools, 4, 1–6. http://portal.acm.org/
citation.cfm?id=334709.334710.

Mayo, M., & Zhang, E. (2009). 3D face recognition using multi-
view keypoint matching. Sixth IEEE International Conference on
Advanced Video and Signal Based Surveillance, 2009. AVSS ’09 (pp.
290–295). doi:10.1109/AVSS.2009.11.

Mian, A., Bennamoun, M., & Owens, R. (2010). On the repeatability
and quality of keypoints for local feature-based 3d object retrieval
from cluttered scenes. International Journal of Computer Vision,
89(2), 348–361. doi:10.1007/s11263-009-0296-z.

Mian, A. S., Bennamoun, M., & Owens, R. (2008). Keypoint detec-
tion and local feature matching for textured 3d face recognition.
International Journal of Computer Vision, 79(1), 1–12. doi:10.1007/
s11263-007-0085-5.

Mian, A. S., Bennamoun, M., & Owens, R. A. (2006). Automatic 3d
face detection, normalization and recognition. In 3DPVT (pp. 735–
742). doi:10.1109/3DPVT.2006.32.

123

http://dx.doi.org/10.1109/TIFS.2010.2054081
http://dx.doi.org/10.1109/TIFS.2010.2054081
http://dx.doi.org/10.1109/3DPVT.2006.34
http://dx.doi.org/10.1145/1877808.1877825
http://dx.doi.org/10.1145/1877808.1877825
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.2312/3DOR/3DOR11/071-078
http://dx.doi.org/10.1111/j.1467-8659.2008.01162.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01162.x
http://dx.doi.org/10.1109/TPAMI.2006.210
http://dx.doi.org/10.1016/S0031-3203(03)00035-9
http://dx.doi.org/10.1016/S0031-3203(03)00035-9
http://dx.doi.org/10.1109/CVPR.2005.441
http://etheses.whiterose.ac.uk/2274/
http://etheses.whiterose.ac.uk/2274/
http://dx.doi.org/10.1145/1877808.1877815
http://dx.doi.org/10.1109/3DIMPVT.2011.33
http://dx.doi.org/10.1109/3DIMPVT.2011.33
http://dx.doi.org/10.1109/BTAS.2007.4401927
http://dx.doi.org/10.1109/BTAS.2007.4401927
http://dx.doi.org/10.1109/BTAS.2008.4699324
http://dx.doi.org/10.1109/AFGR.2008.4813413
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1145/966131.966134
http://dx.doi.org/10.1016/j.cag.2010.11.010
http://dx.doi.org/10.1016/j.cag.2010.11.010
http://dx.doi.org/10.1002/cav.v20:2/3
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://portal.acm.org/citation.cfm?id=334709.334710
http://portal.acm.org/citation.cfm?id=334709.334710
http://dx.doi.org/10.1109/AVSS.2009.11
http://dx.doi.org/10.1007/s11263-009-0296-z
http://dx.doi.org/10.1007/s11263-007-0085-5
http://dx.doi.org/10.1007/s11263-007-0085-5
http://dx.doi.org/10.1109/3DPVT.2006.32

Int J Comput Vis

Pears, N., Heseltine, T., & Romero, M., (2010). From 3D point clouds
to pose-normalised depth maps. International Journal of Computer
Vision, 89(2), 152–176. doi:10.1007/s11263-009-0297-y.

Phillips, P., Flynn, P., Scruggs, T., Bowyer, K., Chang, J., Hoffman, K.,
et al. (2005). Overview of the face recognition grand challenge. In
IEEE computer society conference on computer vision and pattern
recognition, 2005. CVPR 2005 (Vol. 1, pp. 947–954). doi:10.1109/
CVPR.2005.268.

Romero, M., & Pears, N., (2009). Landmark localisation in 3d face
data. In Sixth IEEE international conference on advanced video and
signal based surveillance, 2009. AVSS ’09 (pp. 73–78). doi:10.1109/
AVSS.2009.90.

Romero-Huertas, M., & Pears, N. (2008). 3D facial landmark locali-
sation by matching simple descriptors. In 2nd IEEE international
conference on biometrics: theory, applications and systems, BTAS
2008 (pp. 1–6). doi:10.1109/BTAS.2008.4699390.

Rubner, Y., Tomasi, C., & Guibas, L. J. (2000). The earth mover’s
distance as a metric for image retrieval. International Journal of
Computer Vision, 40, 99–121. doi:10.1023/A:1026543900054.

Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B.,
Sankur, B., et al. (2008). Bosphorus database for 3d face analysis.
In Biometrics and identity management: first European workshop,
BIOID 2008 (pp. 47–56). Springer: Roskilde, Denmark. doi:10.
1007/978-3-540-89991-4_6.

Segundo, M., Queirolo, C., Bellon, O., & Silva, L., (2007). Automatic
3D facial segmentation and landmark detection. In 14th International
conference on image analysis and processing, 2007 (ICIAP 2007)
(pp. 431–436). doi:10.1109/ICIAP.2007.4362816.

Segundo M., Silva L., Bellon O. R. P., & Queirolo C. C., (2010).
Automatic face segmentation and facial landmark detection in range
images. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, 40(5), 1319–1330. doi:10.1109/TSMCB.2009.
2038233.

Shotton, J., Johnson, M., & Cipolla, R., (2008). Semantic texton forests
for image categorization and segmentation. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (pp. 1–8).
doi:10.1109/CVPR.2008.4587503.

Szeptycki, P., Ardabilian, M., & Chen, L., (2009). A coarse-to-fine cur-
vature analysis-based rotation invariant 3D face landmarking. Inter-
national conference on biometrics: theory, applications and systems
(pp. 32–37). doi:10.1109/BTAS.2009.5339052.

Viola, P., & Jones, M. J. (2004). Robust real-time face detection. Inter-
national Journal of Computer Vision, 57, 137–154. doi:10.1023/B:
VISI.0000013087.49260.fb.

Zaharescu, A., Boyer, E., Varanasi, K., & Horaud, R., (2009). Surface
feature detection and description with applications to mesh match-
ing. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), San Francisco (pp. 373–380). doi:10.1109/CVPR.2009.
5206748.

Zhao X., Dellandr anda E., Chen L., & Kakadiaris I. A. (2011). Accu-
rate landmarking of three-dimensional facial data in the presence of
facial expressions and occlusions using a three-dimensional statisti-
cal facial feature model. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 41(5), 1417–1428. doi:10.1109/
TSMCB.2011.2148711.

123

http://dx.doi.org/10.1007/s11263-009-0297-y
http://dx.doi.org/10.1109/CVPR.2005.268
http://dx.doi.org/10.1109/CVPR.2005.268
http://dx.doi.org/10.1109/AVSS.2009.90
http://dx.doi.org/10.1109/AVSS.2009.90
http://dx.doi.org/10.1109/BTAS.2008.4699390
http://dx.doi.org/10.1023/A:1026543900054
http://dx.doi.org/10.1007/978-3-540-89991-4_6
http://dx.doi.org/10.1007/978-3-540-89991-4_6
http://dx.doi.org/10.1109/ICIAP.2007.4362816
http://dx.doi.org/10.1109/TSMCB.2009.2038233
http://dx.doi.org/10.1109/TSMCB.2009.2038233
http://dx.doi.org/10.1109/CVPR.2008.4587503
http://dx.doi.org/10.1109/BTAS.2009.5339052
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb
http://dx.doi.org/10.1109/CVPR.2009.5206748
http://dx.doi.org/10.1109/CVPR.2009.5206748
http://dx.doi.org/10.1109/TSMCB.2011.2148711
http://dx.doi.org/10.1109/TSMCB.2011.2148711

	A Machine-Learning Approach to Keypoint Detection and Landmarking on 3D Meshes
	Abstract
	1 Introduction
	2 Previous Work
	2.1 Landmark Candidate Detection on 3D Faces
	2.2 Keypoint Detection on Faces
	2.3 Keypoint Detection and Landmarking on Other Objects

	3 Overview
	3.1 Problem Statement
	3.2 Outline of the Keypoint Detection System
	3.2.1 The Offline Training Process
	3.2.2 The Online Keypoint Detection Process

	3.3 Datasets
	3.4 Performance Metrics
	3.4.1 Landmark Retrieval Rate
	3.4.2 Landmark Positioning Error
	3.4.3 Global Registration Error

	4 A Machine Learning Approach to Keypoint Detection
	4.1 Computation of Descriptors
	4.1.1 Normals
	4.1.2 Neighborhoods
	4.1.3 Principal Curvatures
	4.1.4 Descriptors Derived from Principal Curvatures
	4.1.5 Local Volume (VOL)
	4.1.6 Distance to Local Plane (DLP)
	4.1.7 Histogram-based Local Shape Descriptors

	4.2 Generating Descriptor-Landmark Scores
	4.2.1 Distributions of Local Shapes
	4.2.2 Converting Descriptor Maps to Descriptor-Landmark Score Maps
	4.2.3 Dealing with Shape Histograms

	4.3 Combining DL-Score Maps into a Single Landmark Score Map
	4.3.1 Linear Discriminant Analysis (LDA)
	4.3.2 AdaBoost
	4.3.3 Boosting Technique
	4.3.4 Offline AdaBoost Training
	4.3.5 Online Landmark Score Generation using AdaBoost

	4.4 Keypoints from L-score Maps
	4.4.1 Keypoints from the Keypoint Score Map
	4.4.2 Keypoints from Landmark Score Maps

	5 Keypoint Detection Results
	5.1 System Configurations
	5.2 LDA Results
	5.2.1 Landmark Retrieval
	5.2.2 Repeatability

	5.3 AdaBoost Results
	5.3.1 Number of Classifiers
	5.3.2 Computing the Separation Between L-Score Distributions
	5.3.3 Comparisons of AdaBoost with LDA

	6 Application to Landmarking
	6.1 Workflow
	6.2 Model-fitting
	6.2.1 Scale-adapted Rigid Registration
	6.2.2 Dealing with Symmetry
	6.2.3 Projection of Landmarks onto the Query Mesh

	6.3 Landmarking Results
	6.3.1 Limitations

	6.4 Computation Time Performance

	7 Conclusions
	References

