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Abstract

We present a machine learning framework that automat-
ically generates a model set of landmarks for some class
of registered 3D objects: here we use human faces. The
aim is to replace heuristically-designed landmark models
by something that is learned from training data. The value
of this automatically generated model is an expected im-
provement in robustness and precision of learning-based
3D landmarking systems. Simultaneously, our framework
outputs optimal detectors, derived from a prescribed pool
of surface descriptors, for each landmark in the model. The
model and detectors can then be used as key components
of a landmark-localization system for the set of meshes be-
longing to that object class. Automatic models have some
intrinsic advantages; for example, the fact that repetitive
shapes are automatically detected and that local surface
shapes are ordered by their degree of saliency in a quan-
titative way. We compare our automatically generated face
landmark model with a manually designed model, employed
in existing literature.

1. Introduction
Often, correspondences are sought between an objects’s

3D scan and some generic model of the object class,
which has semantic labels. A typical problem of this type
is a landmarking problem where, for example, a set of
(position, label) pairs are found on an input scan, such that
they correspond correctly with the associated points on the
model. This is the kind of problem that we are concerned
with in this paper, when applied to 3D meshes.

The correspondence search process is usually broken
down into a number of stages, namely (i) keypoint detec-
tion, (ii) keypoint description and (iii) matching. The de-
tection process aims to take a large, dense set of points over
the whole object and produce a much smaller, sparser set
of interest-point detections, also known as keypoints. In
general, this step makes the correspondence search com-
putationally tractable and focuses attention on areas that

Figure 1. Example of an organically-shaped object and several ar-
bitrary sparse sets of landmarks that can be used as models.

are different from their neighbors, at least on some local
scale. This brings us to the concept of saliency, which is
broadly defined as something that is locally distinctive, or
pronounced, on the shape in question. We acknowledge that
the term saliency has been use in other works before, but
they refer to other definitions than the specific mathemati-
cal definition that we give in Sect. 3.4.

For a wide class of 3D objects that includes those with
soft organic shapes (e.g. the human face), it is not always
clear how to design a keypoint detector, because it is not al-
ways clear what the most distinctive surface points are in the
first place. Typically, for human faces, extrema of Gaussian
curvature have been detected, but this yields a very sparse
set of useful keypoints. Others [4] have defined what they
believe to be a useful set of locations at which to learn lo-
cal shape properties, but there is often no obvious geometric
justification for these. In many cases it has more to do with
the existence of words to describe these locations and the
words may even relate to color-texture properties (e.g. ‘cor-
ner of eye’) than geometric properties of the 3D mesh.

1.1. Problem Definition and System Outline

In existing literature, landmark models are heuristically-
designed and often appear to be arbitrary. In figure 1, we see
that an organic shape can be landmarked in a large number
of ways. The key question that we address is: how do we
automatically choose a set of points that constitute a good
symbolic model for some object class?

A central problem is that the choice of model points
(‘landmarks’) and the choice of the functional forms of their
detectors are inter-related. Therefore, one has the choice
of either: (i) manually defining some detector function and
computing an optimal set of model points, or (ii) manu-
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ally defining a desired set of model points and comput-
ing some optimal detector functions. (In general, different
model points will have different optimal detector functions.)
In this paper, we recognize this inter-dependency and we
seek a third way: the automatic computation of both the 3D
model points and the detector functions. The value of do-
ing this is that it may lead to improved landmark models
that give faster and more robust model fitting on previously
unseen test scans of 3D objects.

Note that our system requires a set of shapes that have
been registered by some means: usually some form of it-
erative closest points (ICP) [2], such as the deformable ap-
proach [1] used to develop the Basel Face Model [9]. (This
may seem like a circular argument, because the main use of
our landmarking output is to register shapes, but this work
is a first step in designing a fully automated and optimized
closed loop landmarking and registration process.)

In this article, our approach is applied to the specific ob-
ject class of human faces. This is because we have access
to registered face data and dealing more efficiently with hu-
man faces has huge potential applications in both industry
and academia (e.g. face recognition, expression recognition,
human-machine interaction). Having said that, the ideas
presented in this paper can be applied other classes of or-
ganic objects where selecting a set of landmarks to form a
model is not straightforward, for example bones or animal
faces. However, without access to the appropriate registered
datasets, we can make no claims about how well our model
discovery process will work for these cases.

Figure 2 shows an outline of model-based 3D shape
landmarking systems, where we try to emphasize the dif-
ference between what is presented in this paper (blue back-
ground in the figure) and what is presented in existing pa-
pers in the literature (red background). In this work, we
present a model discovery system that tries to optimize
the selection of a sparse set of target points (landmarks),
whereas, in existing work, the model is manually designed.
After we have run our automatic model generation process,
we can check whether our framework selects similar loca-
tions that are usually selected in manual landmarking pro-
cesses, such as those used in supervised machine learning
scenarios or even manual anthropometry.

In the next section, we present relevant literature. We
then present our framework and the datasets used for our
experiments. This is followed by results and a comparison
between automatic and manually defined models.

2. Related Work
The concept of saliency and the terms salient point,

salient region and salient object is defined in many different
ways in the literature. Perhaps the most well-known defini-
tion is that of Lindeberg [8], where salient points are found
in 2D images as local extrema of the difference of Gaussian
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Figure 2. Workflow of a landmarking system. In existing systems
(red box), the model is heuristically designed. In contrast, our
system (blue box) tries to generate an optimal model for a given
landmarking system. Such a model should improve robustness in
landmarking instances of previously unseen test objects (right).

(DoG) filter. This approximates the scale normalized Lapla-
cian of Gaussian (LoG) applied to an intensity image. This
DoG approach is effectively a multi-scale feature detector
that has also been applied to 3D meshes in various ways;
for example [3] and [14]. An early discussion of saliency
was presented by [6], who describe how a saliency map can
be built for 2D images in the context of visual attention.
Colors, intensities and orientations are considered over a
variety of scales and using center-surround differences (dif-
ferences between fine and coarse scale), a single saliency
map is ultimately generated to guide visual attention.

Thus, although there have been a number of previous
studies on 2D image saliency, for example in visual at-
tention studies, image compression and so on, there are
very few works that discuss general notions of saliency on
meshes, beyond the design of keypoint detectors (eg. DoG-
based) and other feature extractors, such as high curvature
ridge lines [13]. However, one such paper in this cate-
gory is that of Lee et al. [7], who define a scale-dependent
mesh saliency measure using a center-surround operator on
Gaussian-weighted mean curvatures. The motivation for
doing this was to provide information for mesh simplifica-
tion and viewpoint selection and to provide mesh render-
ings that provide visually appealing results. Their approach
is inspired by human perception where, for example, a flat
region in the middle of a set of high curvature bumps can
be detected as being salient, even though it has near-zero
curvature.

3. Automatic Landmark Model Discovery

Our framework aims to learn what surface points can
easily be retrieved from a set of registered 3D meshes of
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Figure 3. Examples of existing sets of landmarks (with citations) that are generic and sparse symbolic representations of 3D faces. These
are used as inputs to landmarking applications. In most cases, the points have been chosen because they can be explained through language
to a human operator, not necessarily because of their optimality for a given purpose. In this paper, we aim to find a generic model of 3D
faces that is not arbitrarily defined, but is optimized for local feature localization and hence face detection.

a given object class, using a predefined set of local shape
descriptors and a definition of vertex locality. Our input of
registered 3D meshes is derived from scans of human faces.
These meshes are in dense correspondence with respect to
their vertices and are generated from either the Basel Face
Model (BFM) [9] or the FRGC v2 dataset [10].

Two metrics are presented in this paper that are used to
extract our model landmark positions: a saliency metric and
a ubiquity metric. It could be argued that our metrics lack
a ‘ground truth’ for their evaluation, but the essence of this
work is ‘model discovery’: where we are using different
types of evidence (saliency and ubiquity) to learn the land-
mark model in a data-driven way.

In the following three subsections, we outline three es-
sential components of our system: (i) computation of a
‘pool’ of local shape descriptor values, (ii) computation of
descriptor scores from these raw descriptor values, and (iii)
learning optimal functions of such descriptor scores to serve
as detector functions for local shapes. Before describing
these components, we need to define some notation.

Notation. For some i, (i ∈ {1 . . . V }), we define
vki , (k = 1 . . . N) as corresponding vertices across N regis-
tered training meshes 1. We use the symbol vi to represent
the vertex indexed by i in the ‘template model’, T , (a mean
mesh) of all of the registered training meshes. Note that the
landmark model L that we wish to extract is a sparse subset
of this template model. Also, let d, (d ∈ {1 . . . D}) be the
index of one particular local shape descriptor (eg. Gaussian
curvature) in the pool of D descriptors 2 defined within our
system and let md(ik) be that descriptor’s value at vertex
vki , on training meshMk.

3.1. Local Shape Descriptor Values

We do not wish to rigidly prescribe a descriptor or com-
bination of descriptors, as those will often limit the degree

1The experiments presented in this paper use V = 2000 vertices in
correspondence across N = 200 meshes.

2We avoid the term ‘bag of descriptors’ to avoid confusion with the
well-known ‘bag of features’ method.

of distinctiveness that can be achieved, according to some
performance metric definition. Instead, we define a ‘pool
of D descriptors’ as an input to the system. In the exper-
iments presented here, D = 8 local shape descriptors are
used, as follows: the first and second principal curvature
(k1 and k2), the Gaussian curvature (K), the mean curva-
ture (H), the Shape Index (SI), the log-curvedness (LC), the
local volume (Vol) and the Distance to Local Plane (DLP).
These local shape descriptors were computed using imple-
mentations provided to us, courtesy of [4].

In the first stage of our system we compute D raw de-
scriptor values (magnitudes depend on choice of units) at
every vertex, vki , in the registered training data. These raw
descriptor values describe the the local shape that is en-
closed by a small sphere centered on vertex vi (we use a
15mm radius).

3.2. Local Shape Descriptor Scores

The probability density function (pdf) of the N descrip-
tor values, md(ik) (k = 1 . . . N), which are associated
with descriptor d at vertex vi in the template model T , can
be learnt and approximated by a known function (eg. a
Gaussian). Then, for any vertex, vkj , on any training mesh,
a descriptor score can be computed:

Sd
i (jk) =

pdfdi (md(jk))

max
x

(pdfdi (x))
, (0 < Sd

i (jk) ≤ 1), (1)

where jk in the above equation indicates that the descriptor
score is evaluated at vertex vkj .

This score represents how close the descriptor value at
vertex vkj is to the modeled modal descriptor value at ver-
tex vi, with respect to descriptor, d. In the case where the
modeled pdf is a Gaussian 3, the descriptor score is given
as:

Sd
i (jk) = exp

(
− (md(jk)− µi,d)2

2σ2
i,d

)
, (2)

3We found that 7 of 8 local descriptors have distributions that are well
approximated by a Gaussian. Only the shape index did not, and we found
that this was well approximated by an inverse Gaussian distribution.



where µi,d is the mean of the descriptor values,
md(ik), (k = 1 . . . N), at vertex vi within T and σi,d is
their standard deviation.

3.3. Landmark Score Functions

Potentially, any vertex vi in T can be selected as a land-
mark. We seek functions of descriptor scores at vi that make
that particular vertex distinctive with respect to its surround-
ing surface. We call such functions landmark score func-
tions and only the most successful of these will be selected
for the final landmark model, L. In order to show how the
descriptor scores are combined into landmark score func-
tions, we first need to define two labeled classes of vertex
for some given vertex, vi, in T .

• The neighboring class is the set of close neighboring
points that are so close that they are similar in shape
to the input point. This set of vertices is within a Eu-
clidean inner sphere defined by radiusRA and centered
on vi and is the union of such vertices across the whole
of the registered training set.

• The non-neighboring class is the set of points sur-
rounding the neighboring points that are used as a ref-
erence to which the neighboring class should be com-
pared. This set of vertices is contained within a Eu-
clidean spherical outer shell defined by the two radii
RB and RC , centered on vi and taken as the union of
such vertices across the whole training set.

We have experimented with a variety of values for
(RA, RB , RC) and we usually use (2, 10, 45) in units of
millimeters.

In order to determine an optimized landmark score func-
tion, whose output values best separate the two classes de-
fined above (i.e. neighboring and non-neighboring ver-
tices), several methods can be used and we elected to use
Linear Discriminant Analysis (LDA).

The basic idea is to compute a landmark score func-
tion, for every vertex, vi, in T . Given the two classes
of vertex described above, centered on vi, D descriptor
scores are computed, where all D sets of distribution pa-
rameters, (µi,d, σi,d), have been computed at vertex vi.
LDA computes the optimal linear combination of these de-
scriptor scores that best separates the neighboring and non-
neighboring classes, in terms of such descriptor scores ref-
erenced to the descriptor value distributions at vertex, vi.
Thus a vertex-specific linear combination of D descriptor
scores is used as a landmark score function to optimally
distinguish each vertex from its neighbors - i.e. each vertex,
vi, has a different landmark score function, γi(.), where:

γi(Sj) = uT
i Sj = [u1i . . . u

D
i ][S1

j . . . S
D
j ]T , (3)

where Sj is a D-dimensional feature vector of descriptor
scores at some vertex vj and ui is the unit vector extracted
by the LDA process at vertex vi in T .

In the case of LDA applied naively, the results can be
quite unstable, as only one value is generated for per vertex
for all the training set. In order to have more meaningful
local values, LDA is computed 20 times with different sub-
sets of the training set. The final vector, u, which linearly
weights the D = 8 descriptor scores in Eq. 3, is the mean
of these results.

What we need now is a way to determine whether only
the close neighbors of vertex vi are the points that look like
vertex vi, in terms of the landmark score at vi, namely γi(.).
Thus we define two metrics aimed at extracting model land-
mark positions: the saliency metric and the ubiquity metric.
These are discussed in the following two subsections.

3.4. The Saliency Metric

Essentially the LDA algorithm is finding the unit vec-
tor (direction) in D-dimensional descriptor score space that
best separates the two vertex classes, neighboring and non-
neighboring. For each neighboring or non-neighboring ver-
tex, the LDA-derived descriptor score function projects that
vertex’s D-dimensional descriptor score down onto that unit
vector and generates a normalized score between 0 and 1. If
we can quantify the separation between the class-based dis-
tributions of these projected descriptor scores, then we have
a measure of how well separated the distribution of ‘close
neighbor’ detector response scores are with respect to their
surrounding vertex scores, for the optimal linear landmark
score function γi(.).

Let p0i and p1i
4 be the distribution of these normalized

γi(.) scores for the neighboring and non-neighboring class
respectively. For every threshold t set between [0, 1], the
following rates can be computed:

True Negative Rate: TNR(t) =
∫ t

0
p0i (x) dx

False Positive Rate: FPR(t) =
∫ 1

t
p0i (x) dx

False Negative Rate: FNR(t) =
∫ t

0
p1i (x) dx

True Positive Rate: TPR(t) =
∫ 1

t
p1i (x) dx

(4)

We define a saliency metric as Λ(i) = 1− g(p0i , p
1
i ) where

g(p0i , p
1
i ) is the oriented intersection of the score distribu-

tion of both classes. By integrating over all possible t, the
global notion of the intersection I between the two distribu-
tions is defined as:

g(p0i , p
1
i ) =

∫ 1

0
FNR(t).FPR(t) dt (5)

The saliency can therefore be expressed as:

Λ(i) = 1− g(p0i , p
1
i )

= 1−
∫ 1

0

∫ t

0
p1i (x).(1− p0i (x)) dx dt

(6)

4These colored symbols correspond to the red and green colored distri-
butions shown in Fig. 4.



This saliency metric can be computed for every single ver-
tex in the template model T , providing us with a saliency
map over the template’s surface. This can be color-mapped
for visualization, see Fig. 4, left color map.

3.5. The Ubiquity Metric

Detecting the local saliency is sometimes not enough,
if the particular shape in question is commonplace on the
object’s surface. It is possible to have landmark score func-
tions (detector functions) that are highly locally salient, but
ubiquitous in their response: consider, for example, a spike
detector over the surface of a sea urchin. An ideal model
landmark should not only be locally salient, but also rare.
Thus our second metric, a ubiquity metric, measures the
output of the landmark score function, γi(.), over the whole
object surface, averaged over all registered training data.

Given a landmark scoring function γi(.) for a given ver-
tex vi in T , we compute the ubiquity sum function as:

U(i) =
1

N

N∑
k=1

V∑
j=1

γi(jk) (7)

In an ideal situation, unlikely to be encountered in prac-
tice, only one vertex, vkj per training mesh would trigger a
non near-zero score for vertex vi and this score would be
1, achieved whenever j = i. Therefore, a vertex perfectly
suited to being selected as a landmark would have a ubiquity
score close to unity. In reality, many vertices will have non
near-zero values and the ubiquity score will be significantly
higher than 1. However, this does provide a second method
to find potential model landmarks, which is to select those
that generate very low ubiquity scores.

We define a ubiquity map as the ubiquity metric values
over the the full template model T , referenced to some spe-
cific vertex’s landmark score function, γi(.). Since there are
V vertices in each training mesh, we have V ubiquity maps.
A video showing ubiquity maps referenced to every vertex,
vi in T , is presented as supplementary material to this pa-
per. (We emphasize that the color maps generated here are
not local descriptors.)

3.6. Selecting a Set of Landmarks

Once a saliency map or ubiquity map has been con-
structed over the set of vertices vi in T , it is possible to
extract local extrema (saliency maxima and ubiquity min-
ima) as the landmarks that constitute our extracted model.
As the desired output of such a system is a sparse set of
points, the notion of locality should be taken into account
at this stage. Furthermore, the object might present some
repeated surface features for which we may only want one
instance in the model, at least initially.

To avoid using parameters in this part of the system, a
simple iterative scheme is implemented. Initially, we have

one normalized saliency score map and we detect the single
point with the globally maximum value on that map. We
then compute the normalized landmark score function asso-
ciated with that vertex over all vertices of the mesh (again
we visualize this as a color map over the template’s surface).

If the point was a locally unique point (e.g. the nose tip)
only one high scoring region (colored as a blue patch on
the landmark score map) will appear; if it was a symmetric
point (e.g. an eye corner), two or more patches will appear.
This map is subtracted from the first one and the resulting
map is normalized. The second best shape of interest will
then be the global maximum over this newly created map.
By iterating in this fashion, the set of landmarks created
will never contain similar (eg. symmetric) shape and will
be relatively sparse.

It is important to note, however, that we may wish to
build a configural model of landmarks using multiple in-
stances of the similar local shapes, for example we would
usually want to include both the left inner eye corner and
the right iner eye corner in a configural model of the human
face. In this case, we can compute the landmark score func-
tion for each extracted landmark and extract two (or more)
strong local maxima from the score map. Indeed, we show
such additional (symmetric) detections on the face for the
saliency metric (Fig. 7) and the ubiquity metric (Fig. 8).

3.7. System Input Parameters

In addition to the training dataset, consisting of densely
registered surfaces, our system requires a number of input
parameters that will directly influence the results of our ex-
periments. Here we describe all of them.

One obvious source of variation is the number of descrip-
tors, their nature, and the parameters for their computation.
An advantage of our system is that those descriptors do not
need to be independent. The correlation between descrip-
tors is taken care of in the LDA-based, two class separation
process. Therefore, we do not need to test the system with
different subsets of descriptors. The biggest set of descrip-
tors will always give better results. The only concern is
their computation time. In this paper, we use 8 different
scalar local shape descriptors at a single scale. The neigh-
borhood size is fixed to 15 mm, which previous studies have
shown to be adequate for this set of descriptors for hand-
placed landmarks [4]. We acknowledge that changing this
scale and/or the pool of descriptors can change the nature of
the detected landmarks. Our aim is to compare manual and
automatic model landmarks; choosing the best set of D de-
scriptors to employ within our framework and choosing the
best set of associated scales over which to compute them is
another problem altogether.

Another source of variation is the definition of the lo-
cality that defines the vertex classes. The differentiation of
neighboring and non-neighboring vertices is done using Eu-



Method 1: Saliency Score Map Method 2: Ubiquity Score Map
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Figure 4. Resulting map for our two methods. For four random points we show, for the first method, a plot of the distribution of the scores
associated with the matching neighboring vertices (green) and the non-neighboring vertices (red). The values on the central map are formed
as the complement of the distribution intersection. For the second method, we show the associated response score map. The values on the
central map are the sum over all vertices of the corresponding response score map.

FRGC (real) BFM (synthetic)
(Coarse Correspondence) (Fine Correspondence)

Figure 5. Top: template models, T , derived from the FRGC (left)
and BFM (right). Bottom: examples from the 200 training meshes
associated with these templates.

clidean spheres and shells at different radii.
A further parameter of the system is the sparsity of the

set of landmarks to be detected. The system should know
how many landmarks it should be looking for and/or what
is the minimum distance between landmarks that can be ac-
cepted. The number of landmarks can either be fixed or
given as a ratio of the number of vertices in the registered
training data. The minimum separation between features
is given as a Euclidean distance. In this paper, we present
results looking at a maximum of 10 landmarks, with a min-
imum distance of 10 mm between any two landmarks.

4. Datasets

Two different face datasets are used in our experiments
(see Fig. 5). One is synthetic and has been generated from
the Basel Face Model (BFM5) [9]. The second consists
of real scans from the FRGC dataset [10], registered using
ICP [2].

5Our BFM-derived meshes are not directly from individuals, but the
BFM model itself was derived from real face scans.

BFM. We generated 200 random faces from the Basel
Face Model (BFM), as well as a null-parameterized face to
be used as a (mean) template model over which color maps
are generated. To reduce the computation time, the model
was cropped using a sphere of radius 100 mm around the
nose tip. The inner mouth part was manually erased and the
mesh resolution was reduced so that the number of vertices
is 2000. The vertex indices on this lower resolution tem-
plate model, T , were used to reconstruct similar low reso-
lution faces from the 200 meshes in the training data. Every
vertex in our 2000 vertex template model has a correspon-
dence in every mesh of the training set.

FRGC. For the FRGC, 200 random faces of different in-
dividuals were selected from the whole set. ICP-based reg-
istration was used to place cropped versions of the meshes
into correspondence. The template model mesh, T , was
generated by averaging depth values. The generated mesh
is approximately 2000 vertices. For every template model
vertex, a correspondence is present in every training mesh
by looking at the closest point in the (x, y) plane projection.
Compared to the BFM, the registration is approximate for a
single mesh. However it provides a good mean response, if
enough meshes are present in the training set, and allows us
to see if our method can be used without any supervision, as
the correspondence computation was fully continuous (i.e.
unlike the BFM, no manual anchor points were used for
these FRGC registrations).

5. Results
Figure 4 shows maps computed using our two meth-

ods. A first comforting result is that both techniques for
both datasets find roughly the same regions of the faces
as interesting. While the first method finds locally salient
points, the second finds globally rarer and more discrimina-
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Figure 6. Saliency map for the two datasets with different locality
definitions. Regions of maximal saliency are represented in blue.

Manual Automatic

Figure 7. Top left: manual model set of 10 shapes used in the
literature, repeated symmetrical shapes not shown. Top right: the
10 best local shapes detected by our automatic method, based on
saliency. The numerical labels for the automatic method show the
order in which the vertices are extracted, 0 being the most salient
and 9 being the least. The bottom line shows the corresponding
symmetrical detections (manual and automatic), extractable with
the same detector function (landmark score function). With the
automatic system, the correlations between the mouth and the eye
shape are detected.

tive points. It appears that, on faces, points that are locally
salient are also globally rarer. This is something that we
humans find obvious in human faces, but that is not true in
general; for example, recall the sea urchin. Unfortunately,
we do not have access to registered datasets for several dif-
ferent classes of organic shapes.

Figure 6 shows examples of computed saliency map
using different locality definitions. The example on the
left of the figure is the extreme case, where only vertices
vki , k = (1 . . . N) are considered as the neighboring class,
and vkj , (∀j|j 6= i, k = 1 . . . N) is the non-neighboring
class. The definition of the locality can not be optimized

Figure 8. Left: automatic model set of ordered shapes of inter-
est discovered with the ubiquity score map. Right: corresponding
symmetrical detection.

within the system and has to be provided in input. For the
remainder of this article we use the middle configuration
(RA = 2, RB = 10 and RC = 45). When selecting the
maxima on this map, 10 shapes of interest can be defined
and compared to the 10 manual landmarks commonly used
in the literature. One advantage of the automatic detection
of the shapes of interest is that the center of areas with sim-
ilar shape can automatically be labeled.

In Fig. 7, the shapes of interest and corresponding sym-
metrical points are presented for both the manual and au-
tomatic sets of landmark. (Symmetric local shapes are ex-
tractable with the same detector functions as their symmet-
ric counterparts.) When comparing both sets (see Fig.9), it
can be noted that many of the coarse regions detected are
similar in both solutions. For the ones that are different, it
appears that the shapes selected by the automatic method
have a ubiquity score far lower than the human ones, and
are therefore more likely to be more easy to detect and label
in a face landmarking system.

Since saliency and rarity seem to be correlated on faces,
another way at looking at the problem is to try to find lo-
cal minima of the ubiquity map. Figure 8 shows minima
detected on the ubiquity score map of the BFM dataset and
the detected centroids for the associated landmark score re-
sponse map. Because the response map for the eye and the
mouth corner are similar, our extrema detector does not de-
tect the mouth corner as a shape of interest. It is also not
detected when looking at the symmetrical shapes, as the re-
sponse is not high enough at those points. Improved ex-
trema detection techniques should be able to resolve this
problem.

6. Conclusions and Future Work
We have presented a way to automatically extract a

model set of landmarks to be used as shapes of interest
from a registered training set. We discovered some similari-
ties and some differences in the landmark selection made by
our automatic process and those typically made by humans.
The most important thing is the fact that the landmarks from
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Figure 9. Similarities (left) and differences (right) between automatic (top row) and manual landmarks (bottom row). Most of the automatic
landmark are very similar (in a qualitative way) to the ones picked by human specialists. However some of them are different. For the ones
that are different, the definition of the automatic ones leads to tighter response maps (lower ubiquity score U(i)).

the automatic model, unlike the human ones, are optimized
for a particular task with a given set of tools (local shape
descriptors).

While our approach eliminates manual supervision for
model landmark selections, it still makes two unsubstanti-
ated assumptions. First, that points are the best things to
detect on faces. Second, that one model should fit all faces.
These were made to solve an otherwise intractable prob-
lem. Future work should try to challenge these two points.
Different face shapes, ethnic groups, gender, age groups,
might be associated with different optimal sets of land-
marks. For example, some people have a shallow cup shape
at the ophrion6, while others have a perfectly monotonous
(round or flat) forehead. The number and nature of the land-
marks to be found on faces can vary a lot and it is likely that
a highly flexible approach to 3D face landmark modeling is
required.
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