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Review

Almost all methods expect non occluded frontal face
A few that don’t:

Allow some pose variation (All expert systems):
[Colbry et al., 2005]: Curvature + ICP + Relaxation
[Lu and Jain, 2006]: Directional Maximum
[Faltemier et al., 2008a]: Rotated Profile Signature

Allow some occlusions (Machine Learning System):
[Zhao et al., 2011]: 2D + 3D SFAM

[Colbry et al., 2005] [Lu and Jain, 2006] [Faltemier et al., 2008a] [Zhao et al., 2011]

Almost all papers expect the nose will be present
Most papers require two well defined inner corners of
the eyes
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Gap in research

3D Landmark
Localisation

Expert Systems

Curvature/Volume Based

[Colbry et al., 2005]

[Chang et al., 2006]

[D’Hose et al., 2007]

[Segundo et al., 2007]

[Romero and Pears, 2009]

[Szeptycki et al., 2009]

[Pears et al., 2010]

Directional Projection
[Chang et al., 2006]

[D’Hose et al., 2007]

Slice/Profile Based

[Mian et al., 2006]

[Segundo et al., 2007]

[Faltemier et al., 2008b]

Recipes:
Landmark-dependant
Sequential
(single point of faillure)
Salient point only

Machine Learning

2D Depth Map
[Berretti et al., 2010]

[Zhao et al., 2011]

Not
pose-invariant

3D Mesh This Work
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Landmarking

Keypoint detection

:
Using On-Manifold Machine Learning techniques

Labelling

:
Using Multi-attributed Hypergraph Matching

Position refinement

:
Not Discussed Here

Hypergraph face representation for recognition
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Databases

FRGC v2

4950 faces from 557 people
200 in training
4750 in test set (3108 Neutral, 1642 Expression)

Bosphorus

4666 faces from 105 people
Occlusion, Expression, Rotation
99 in training (20 for profile)
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Learning-based methods for
automatic 3D keypoints

detection
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Aim

Keypoints detection (NOT LANDMARKS)

Similar to any of 14 learnt features
(Dictionary of local shapes)
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Results

Sparse selection (max 1%)

Reapeatable (same subject registration)
∼75% (at 10 mm)

Close to human hand-placed landmarks
average All: ∼85% (at 10 mm)
average Nose: ∼99% (at 10 mm)
average Eyes: ∼90% (at 10 mm)

High proportion of the local shapes retreived
∼11.88/14 (at 10 mm)
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Conclusion

Good points:

Detects ”weak” features
No single-point-of-failure design

Limitations:

Can be time consuming
1s (8 desc.)

Linear combination of scores

Clement Creusot, PhD Past research presentation, November 2012, 24 / 67



Background

PhD Motivation

Problem(s)

Keypoint detection

Results

Examples

Labeling

Model Generation

Conclusion

Extending the method

LDA Scoring Adaboost Scoring
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Landmark labeling using
multi-attributed hypergraph

matching techniques
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The landmark Localisation Problem

Landmarking

Positions + Labels

Keypoint Detection Labeling

Landmark = Position + Label

Two Approaches:

Select One Label + Find Corresponding Position
Find All Positions + Find Corresponding Labels
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Structural Matching - Hypergraphs

a b c d e

Examples of hypergraph representations:

(a) 2-uniform hypergraph (just a graph)

(b) Non-uniform hypergraph

(c) Bipartite graph representation

(d) Set representation

(e) Non-uniform hypergraph
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Query
Elements

Model
Elements

...

Candidates

Correspondance Nb

Structure

list of candidates
Associated scores
time more important than memory

Objective:

Reduce correspondence Nb

Seeding

Partial scores
LDA→ Score
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Structural Matching - approaches

Correpsondance Feature Space:
Local Decisions:

Relaxation on hypergraph (6= [Christmas et al., 1995])

new

Global Decisions:

Convex Optimization [Zass and Shashua, 2008]

modified

Tensor power iteration [Duchenne et al., 2009]

used

Randomly Sparsified Spectral method
[Chertok and Keller, 2010]

not used

Correspondance Similarity Space: (post-processing
only)

Decisions by Clustering (for hyperedges of degree 3):

Unit-quaternion clustering technique

new

RANSAC on model registration errors

new
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Correspondance through clustering

It is sometime possible to see the graph matching
problem as a clustering problem:

Correspondences between two sets Correspondence-Similarity Space

1

2

4

5

3Q M

1

2
4

5

3

Q M

Convert

Cluster

Select
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Post-Processing

Transformation Matrix 4x4: R′ ~t

0 1

→ q̇ Unit Quaternion
~t Translation
s Scale
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Post-Processing

Unit-Quaternion clustering RANSAC Selection
Similarity: Angle between
quaternions

Clustering + Mean
Rotation

Final Correspondence (NN)

Similarity: Mean distance
between registered
landmarks

RANSAC Selection
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Figure: Landmark retrieval rate for the 14 landmarks on the
FRGC test set.
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#Landmarks 3 1 6 3 5 5 14
Acceptance Radius <? <? <? < 12 < 10 < 12 < 20 < 10 < 15 < 10 < 12 < 15 < 20

Nose (05) 99.40 98.3 99.95 99.77 99.62 99.80 99.87 99.95 99.95 99.01 99.81 100.0 100.0
Eye Inner Corners (01,03) – – 99.83 96.82 96.59 98.54 99.54 99.02 99.64 98.73 99.71 99.96 100.0

Nose Corners (06,07) – – 99.76 – 98.60 99.29 99.87 99.35 99.95 99.36 99.87 99.98 99.98
Subnasale (08) – – 99.98 – – – – – – 99.68 99.98 100.0 100.0

Mouth Corners (09,10) – – – – – – – – – 91.33 95.63 98.34 99.73
Eye Outer Corners (00,04) – – – – – – – – – 89.84 95.92 99.01 99.84

Nasion (02) – – – – – – – – – 97.26 99.07 99.81 100.0
Upper Lip (11) – – – – – – – – – 96.21 98.21 99.73 99.96
Lower Lip (12) – – – – – – – – – 92.04 96.00 98.38 99.05

Chin (13) – – – – – – – – – 84.94 91.96 96.60 98.72
Candidate Selection ES ES ES ES ES ES ML

Independence no n/a no yes no no yes
Test Size 4,485 4,950 4,007 4,013 4,007 4,007 4,750
Train Size – – – – – – 200

Pre-processing S,C1 ∅ H,C S,H S,H,C S,H,C ∅
Pre-processing Time – – 1.1s – – 1.0s 0s

Processing Time – – 0.4s – – 0.3s 1.18s

ES: Expert System, ML: Machine Learning, C: Cropped/Segmented, H: Hole Filling, S: Spike Removal
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Why? - Gap in Research

[Amberg et al., 2007] [Creusot et al., 2011] [Gupta et al., 2007]

[Romero-Huertas and Pears, 2008] [Szeptycki et al., 2009] [Zhao et al., 2011]

Easy to label or explain to an operator

Linked to 2D projections and plane symmetries

Overall arbitrary
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“Descriptive”

Featural/Local information (nodes)
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Organicly-shape objects

More possible point-models than geometric shapes

Less intuition about what model is good
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Example of 3D-objects point models

Articulated Models:

Articulations

Extremities

Non-Articulated Models:

???

???

[Shotton et al., 2011] [Bray et al., 2004] [Creusot et al., 2011]
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Our Approach

Use Detector and Neighborhood definition from
[Creusot et al., 2011]

8 Local Descriptors
Gaussian Distributions
Linear Combination (LDA based)

Test as many models as there are vertices in the
template mesh (∼ 2000)

Define two cost functions for each model:

Saliency: Different from its neighborhood (good)
Ubiquity: Ubiquitous over the face (bad)
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Databases

FRGC (real) BFM (synthetic)
(Coarse Correspondence) (Fine Correspondence)
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Problems

Different answers depending on the registration
method:

Fine registration on clean data (BFM)
Coarse registration on unclean data (FRGC)
Fine registration on unclean data (???) Needed

Optimization method → Depends on the detector
used (and its parameters)

How to include structural information in the model
discovery?

How to project a newly discovered model to unseen
training data? (again a registration problem)
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Good:

Optimize model for a detector
Validate most human-chosen landmarks
Give quantifiable measure of landmark quality

Bad:

Only non-articulated objects for now
Requires a large set of finely-registered objects

Brain teaser:

How do you extend the idea to multi-dimensional
features (curves, area, volumes)?
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Main Contributions

Methodological contributions (New approach):

Full 3D (pose invariant) Machine Learning based face
landmarking.
No domain specific constrains assumed.
Independant/parallel search of numerous landmarks.

Practical contributions:

A new framework for keypoint detection (2 methods
tested)
A study of numerous simple descriptors at different
scales on faces
A framework for feature labelling using hypergraph
matching filters (2 methods tested)
A new graph matcher by relaxation alterning between
the hypergraph and its dual

Clement Creusot, PhD Past research presentation, November 2012, 57 / 67



Background

PhD Motivation

Problem(s)

Keypoint detection

Labeling

Model Generation

Conclusion

Contributions

Limitations

Conclusion

References

Main Contributions

Characteristic

Expert Systems

Face Landmarkers This Work

Object type 3D face only Non-articulated objects
Landmarks number Fix (often <5) Arbitrary (tested up to 14)
Individual detection Landmark dependent Landmark-independent

Processing order Sequential Concurrent
Detections Map extrema Score map extrema

Landmark-Map

correlations

Manually provided

by researcher Learnt automatically
Pre-processing needed Yes No
Local descriptors type Scalar only Scalar and histogram

Descriptors number Fixed (<2) Arbitrary (tested up to 40)
Descriptors combination Manually fixed (linear) Learnt (linear or non-linear)
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Limitations

Local 3D shape descriptors suffer for spurious data

Local 3D shape descriptors suffer for occlusions (near
profiles)

3D descriptors are computationally expensive
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Conclusion

Interesting challenges:

Keypoint detectors for mesh border points (new
descriptors).
Extend to higher-dimensional features
Explore hypergraph representation for non-cooperative
face recognition
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Thank You For Listening!
http://www.cs.york.ac.uk/~creusot
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