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Abstract—Keypoints on 3D surfaces are points that can be
extracted repeatably over a wide range of 3D imaging condi-
tions. They are used in many 3D shape processing applications;
for example, to establish a set of initial correspondences across
a pair of surfaces to be matched. Typically, keypoints are
extracted using extremal values of a function over the 3D
surface, such as the descriptor map for Gaussian curvature.
That approach works well for salient points, such as the nose-
tip, but can not be used with other less pronounced local
shapes. In this paper, we present an automatic method to detect
keypoints on 3D faces, where these keypoints are locally similar
to a set of previously learnt shapes, constituting a ‘local shape
dictionary’. The local shapes are learnt at a set of 14 manually-
placed landmark positions on the human face. Local shapes are
characterised by a set of 10 shape descriptors computed over
a range of scales. For each landmark, the proportion of face
meshes that have an associated keypoint detection is used as a
performance indicator. Repeatability of the extracted keypoints
is measured across the FRGC v2 database.
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I. INTRODUCTION

Finding correspondences between 3D surfaces is a crucial
step in many 3D shape processing applications, such as
surface landmarking [2], surface registration [3], 3D object
retrieval [4] and 3D face recognition [5]. The difficulty in
solving this correspondence problem is dependent on the
type of shapes that need to be matched. If we define a
‘keypoint’ as an unlabelled point of interest on the 3D
surface, then we would like a set of keypoints that have
local shapes sufficiently different from their neighbour’s
local shapes, so that they can be extracted repeatedly under
a wide range of 3D imaging conditions. In addition, the
keypoint’s local shapes should ideally be different from each
other, to facilitate the keypoint matching process across the
two surfaces. Here we are focusing on finding a method of
keypoint detection that works across a highly varied set of
soft, organic shapes, such as 3D faces. This is a difficult
challenge, particularly if the goal is to solve the problem
with real world data for which changes in pose and possible
occlusions should be taken into account.

In this paper, we present a method to detect unlabelled
3D keypoints (interest points) whose local descriptors are
statistically similar to a dictionary of learnt landmark shapes.

The learnt shape descriptors are those computed over a
region of interest, at a given scale, around a manually-placed
facial landmark. The ideal output of our algorithm is a set
of keypoints that are localised close to all of the visible
landmark locations, with a limited number of additional
detections. In practice, we expect to miss some landmarks
due to spurious local data. To determine keypoint positions,
a likelihood map is computed over every vertex of a facial
mesh. The selected keypoints are the points reaching local
maxima over this map (see figure 1). This paper discusses
the best way to compute this likelihood map from a given
set of local descriptors. In this discussion, we describe how
to select features (descriptors) and their appropriate scales
for the detection of a specific landmark. Note that, although
a keypoint is generated when a 3D surface point has a local
shape similar to some labelled landmark, the index label of
that landmark (eg. 5, ‘nose tip’) is not retained and is not
an output of the system presented here.

II. RELATED WORK

Keypoint Detection on Faces: Keypoints on 3D faces
are typically used in recognition applications. In such cases,
the desired keypoints are repeatable for a given identity
but differ from one individual to another. In [14], Mian et
al. use a coarse curvature-related descriptor to detect those
keypoints, while in [15] and [16], they are computed using
Scale-Invariant Feature Transform (SIFT[17]) on 2D depth-
maps. In our case, the term ‘keypoint’ is justified as we try to
detect unlabelled, repeatable points of interest. However, our
approach differs, as the scope for the targeted repeatability
is larger. Our technique should be able to detect repeatable
point of interest across the population and not only for
several captures of the same individual.
Keypoint Detection on Other Objects: Computing key-
points in order to determine correspondences is useful for
all kind of objects. In [4], keypoints are computed using
a coarse curvature descriptor to localise objects in scenes
with occlusions. A similar technique using Harris Operator
is proposed in [18]. In [19], two kinds of curvature-related
descriptor (Shape Index and Willmore Energy) are combined
to detect the keypoints on archaeological objects in order
to detect regions matching a given pattern. This last paper
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Figure 1. Examples of extracted keypoints on faces from the FRGC v2 database[1] using our system configuration 1 (left) and 2 (right). The first row
shows the final likelihood map where blue vertices represent the highest scores. In the second row, the associated detected keypoints are shown.

is one of the rare cases where more than one descriptor is
used for keypoint candidate selection. Besides, when several
descriptors are used, combining them is usually done using
fixed coefficients. In this paper, a framework is presented to
determine what descriptors should be used and how they can
be combined for the particular problem of 3D facial keypoint
detection. However, the general learning framework can be
extended to other classes of object.
Landmark Localisation on Faces: Much of the research
on 3D facial landmark localisation is linked to recognition
applications for which correspondences need to be made in
preprocessing. All of those techniques need at least one point
(usually the tip of the nose, e.g. [6]) and many of them
require at least three points, which enables the computation
of a rigid registration. The most common triplet is composed
of the tip of the nose and the two inner corner of the eyes
because of their extremal curvature.

The selection of landmark candidates is done using dif-
ferent kinds of descriptor map:

• Curvature and/or volume-related maps: assuming the
tip of the nose or the inner-corners of the eyes are the
most salient points ([7] [8] [9] [6][10] [11] [12]).

• Directional projection extrema: assuming the tip of the
nose is the closest point to the 3D camera, or more
generally the most extreme point along a particular
direction ([7][9]).

• Slice and/or profile point detection: detection on
curves generated by intersecting the mesh with planes
([13][5][11])

In order to be able to deal with large pose variations
and occlusion, no assumptions should be made on what
landmarks will be present in the facial mesh. Therefore, a
robust system should be able to detect a greater number of
landmarks than the inner corner of the eyes and the tip of
the nose. Unfortunately, other points on the face that may
be used as landmarks are far less salient than these three.

0 - Left exocanthion (Outer Eye Corner)
1 - Left endocanthion (Inner Eye Corner)
2 - Nasion (Nose Bridge)
3 - Right endocanthion (Inner Eye Corner)
4 - Right exocanthion (Outer Eye Corner)
5 - Pronasale (Nose Tip)
6 - Left Alar Crest Point (Nose Corner)
7 - Right Alar Crest Point (Nose Corner)
8 - Subnasale
9 - Left Cheilion (Mouth Corner)
10 - Right Cheilion (Mouth Corner)
11 - Labiale Superius (Upper lip)
12 - Labiale Inferius (Lower lip)
13 - Pogonion (Chin)

Figure 3. Position of the 14 landmarks used as “shape of interest” for the
training part of the system.

Detecting less salient points using a single local descriptor
would be extremely difficult. In this paper, we show that
a linear combination of simple descriptors can be used to
reliably detect these points.

III. MAIN PROCESS

Figure 2 explains the main workflow used in our exper-
iments. The framework is composed of an offline process
and an online process. The offline part is used to teach the
system what is considered to be a shape of interest. For
that purpose, 14 landmarks over the training set are used
to define a dictionary of local shapes from which statistical
distributions of descriptors are learnt. The 14 landmarks used
are shown in figure 3.
The online part is composed of the following steps:

• D descriptors are computed for all vertices
• For each learnt local shape (14):

– D matching score maps are computed by project-
ing the descriptor values of each vertex against
the associated learnt distributions of the target
landmark. The scores generated are between 0
and 1.

– A linear combination of those D maps is produced
using landmark-specific weights learnt in the of-
fline part. The result is one mixed descriptor map
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Figure 2. Offline process and online process. The offline process provides the online system with parameters of the descriptor distributions for a set of
landmarks and the weights to linearly combine individual matching score maps. In the online process, D descriptor maps are computed from the input mesh,
each value is matched against the 14 learnt descriptor distributions to get score maps with values between 0 and 1. For each landmark, the D descriptor
score maps are combined using the learnt weights. The 14 normalised mixed descriptor maps are combined into a single final map, using the maximal
value (of 14 values) at each vertex. The output keypoints are the local maxima detected on this final map that are above some given threshold (0.85).

per landmark. The mixed map is then normalised
over the mesh to ensure the matching scores of
different local shapes have the same impact on the
final decision.

• All the mixed descriptor maps are combined into one
final map, by using the maximum value (over all 14
landmark dictionary shapes) for each vertex.

• The keypoints are defined as the strong local maxima
on this final map. We use a empirical threshold of 0.85
to discard weak candidates.

The variation of the descriptors at known landmark loca-
tions is learnt in the offline part by fitting an idealised distri-
bution (most of the time a Gaussian) to the training data. The
weights to combine matching score maps are defined using
Linear Discriminant Analysis (LDA) over a population of
neighbouring and non-neighbouring vertices, relative to the
relevant landmark. The population of neighbouring vertices
is defined as those at a distance less than 5mm from the
specified landmark on all facial meshes in the training set.
The population of non-neighbouring vertices is constituted
of those between 15 and 45mm from the same landmark (see
figure 4 for the upper-lip landmark). Those empirical radii
have been selected to get two populations of manageable
size on faces.

LDA applied to these two classes (neighbouring and non-
neighbouring) returns, as its first component, the direction
in D-dimensional descriptor space that best separates the
two sets. Combining weak features for consistent detection

Figure 4. Example of class generation for LDA. Showing neighbouring
(blue) and non-neighbouring (red) vertices for the upper-lip landmark on
one face of the training set.

can of course be done with more complex and non-linear
tools such as kernel methods and boosting techniques. We
decided to first investigate the use of a simple LDA as a
proof of concept.

IV. EXPERIMENTS

Databases: For the experiments, we use the FRGC v2
database [1] which contains 4950 faces of 568 subjects with
some variations in facial expression.

The database is split into two disjoint sets ‘train’ and
‘test’. The training set is composed of 200 neutral faces
of 200 different subjects. The test set is composed of the
remaining 4750 faces.

Hand-placed landmarks are available on all faces to train
the automatic keypoint detector, and on all faces of the test



set to check the results. The landmarks used are a mixture
of contributions from [12] and [10].
Mesh Resolution: Resolution is reduced in each facial
mesh by replacing each block of 4× 4 raw 3D data points
with its average. Meshes are constructed from those points
to facilitate the computation of neighbourhoods and normals.
Two triangle faces are defined for every group of four
adjacent vertices .
Preprocessing: No cropping, spike removal, hole-filling
or smoothing is performed on the data. Firstly, because
smoothing and the size of the neighbourhood used for the
local descriptors are intimately linked. Secondly, because
it might be hard to compare results with other researchers
who use different preprocessing techniques. Spike and hole
removal would probably improve the results of our system.
Cropping the facial region (automatically or otherwise)
would certainly reduce the time of computation.
Local Descriptors: In this paper, 10 common local shape
descriptors are evaluated with varying neighbourhood size
and bin size (if relevant).

• Spin image histograms (SIH): computed using the
method described in [20], the radius of the spin image
is divided in 9 bins, and the height in 18 bins (9 above,
9 beneath the 3D point).

• Spherical histograms (SH): similar to spin images but
with spherical bins defined by two consecutive radii. 9
bins are used.

• Local volume (Vol): computed as the sum of the
tetrahedron signed volume in a given neighbourhood.
The top of all the tetrahedra is the barycentre of the
peripheral points of the neighbourhood, while the bases
are the triangles inside the local area.

• Distance to local plane (DLP): computed as the distance
between the current point and the plane that best fits
its local neighbourhood [10].

Several products and by-products of curvature:
• Principal curvatures (k1) and (k2): computed us-

ing Goldfeather’s adjacent-normal cubic approximation
method [21].

• Gaussian curvature (K): k1k2
• Mean curvature (H): k1+k2

2

• Shape Index (SI): 1
2 −

1
π arctan k1+k2

k1−k2

• Log Curvedness (LC): 2
π log

√
k1

2+k2
2

2

Of course, there are many local surface descriptors and
this list is not comprehensive. We tried to choose pose
invariant descriptors that are mature and very common in the
literature, and we accept that many of them may be highly
correlated (this aspect can be dealt with within the LDA
machinery). Note that two descriptors have been deliberately
omitted from this list: the local Discrete Willmore En-
ergy [22] because it seems too sensitive to the triangulation
of the mesh, and the x/y Wavelet Transform (as used in [9])
because it is not pose invariant.

Descriptor Sizes: For a given mesh resolution, the value
of k1,k2,H,K,SI,LC,Vol and DLP will only depend on the
scale of the local neighbourhood over which they are com-
puted. The histograms (SIH,SH) will only depend on the
size of the bins, as the number of bins is fixed.

To determine the best scales and bin sizes to employ, five
different sizes of neighbourhood radius (5, 15, 30, 45 and
60mm) and four different bin sizes (2.5, 5.0, 7.5 and 10mm)
are evaluated .
Descriptor Distributions: In the offline part of the algo-
rithm, distributions of the descriptors collected from training
data are well approximated with Gaussians (unimodal, non-
mixture), except for the Shape Index(SI) which is bounded
between 0 and 1. Here, we notice that an inverse Gaussian
distribution fits the training data better.

A. Evaluation

A compromise between different objectives has to be
found for this particular problem. Firstly, a small number
of points should be detected, as returning the whole set of
vertices wouldn’t be useful. Secondly, as landmarks have
been used as shapes of interest in the training, the system
should be able to detect keypoints at those very locations.
Thirdly, keypoints, by definition, should have a high intra-
class (same subject’s face) repeatability. We decided to fix
the first objective to a constant, by selecting at most 1% of
the total number of vertices. This represents a few tens of
points per face mesh, which have on average a few thousand
vertices.
Descriptor and Size Selection: Using all the descriptors
at all the scales and resolutions (Configuration 1) would
be very time consuming and unpractical for real-world
applications. The most costly parts of the computation are
the principal curvatures k1 and k2 over different scales,
the computation of the histograms (O(n2)) and the com-
putation of the matching scores, as the number of maps
is proportional to both the number of descriptors and the
number of landmarks. In table I, the weights returned by
LDA for each landmark are given. The higher the value is,
the more discriminative the descriptor is. From this table,
the best descriptor and the best size of neighbourhood can
be observed. They are represented by dark blue cells in the
column corresponding to a given landmark. There is no com-
mon set of descriptors that works for all the landmarks. For
example, not very salient points like the upper and lower lips
(11 and 12) will prefer histogram descriptors to curvature
descriptors, the corners of the mouth (9 and 10) will prefer
to use the Shape Index with a small neighbourhood (15mm),
while the tip of the nose which is salient will best be detected
with bigger neighbourhood (60mm). Figure II shows the
mean results per neighbourhood size. It can be seen that the
best neighbourhood size for our data resolution is around
15mm. For the spherical histogram (SH) and the spin image
histogram (SIH), the best bin dimension is between 5 and
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Figure 5. Example of normalised mixed maps for landmarks 0 (left outer eye corner), 2 (nose bridge), 5 (nose tip), 11 (upper lip) and 13 (chin). The
final map, computed for the same subject using the 14 mixed descriptor maps, is shown on the right.

7.5mm. Regarding the type of descriptor, it can be seen
in table III that the distance to local plane (DLP) often
gives bad support to the distinction between neighbouring
and non-neighbouring vertices when looking at relatively flat
landmark local shape. The spin-image histogram (SIH), the
Shape Index (SI) and the local volume are usually the more
supportive descriptors for this set of landmarks.

From these observations, a new experiment (Configura-
tion 2) is conducted using only one neighbourhood size
(15mm) for all scalar descriptors, and one bin size for
the histogram descriptors (5mm). In total, this comprises
10 descriptor maps and 140 matching maps (far less than
the original 672). The computation of the online process
takes on average 7.75 seconds on an laptop processor Intel
Core I3 M350 (the mean number of vertices in our meshes
being 6392). The more computational part being the neigh-
bourhood and curvature computation (2.04 seconds) and the
computation and projection of the histograms for each vertex
(3.85 seconds). Using fewer descriptors on smaller meshes
(using automatic face cropping) may be a good way to
reduce computation time.

V. RESULTS

Landmark Retrieval: To evaluate the rate at which key-
points are localised near defined landmarks, the percentage
of face meshes in which a keypoint is present in a sphere
of radius R from the landmark is computed. As there is
no clear definition about what distance error should be
considered for a match, this percentage is computed for an
increasing acceptance radius ranging from R = 2.5mm to
R = 25mm. Results for configuration 1 and 2 are given
in figure 6. With configuration 2, at 10 mm, the nose tip is
present in the detected keypoints 99.47% of the time, the
left and right inner eye corners in 90.50% and 92.56% of
the cases. It can be seen that this method will not succeed
in detecting all potential landmarks in all facial meshes.
However, we aim to provide an initialisation for further
face processing that doesn’t rely on a small, specific set (eg.
triplet) of target landmarks. In figure 7, it can be seen that the
mean number of correctly selected landmark candidates is
around 12 already for a radius of 10mm. This summarises
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Figure 8. Percentage of points repeatable after registration at an increas-
ing matching acceptance radius. The measure of the human hand-placed
landmarks is used as a baseline.

our approach: by detecting more points in a looser way,
we decrease the single-point-of-failure risk that candidate
landmark selection systems often have.

Repeatability: The intra-class repeatability is measured
on the FRGC v2 database for which registration of the faces
to a common pose has been computed using the Iterative
Closest Point method (ICP [23]) on the cropped meshes. The
transformation matrices describing those registrations are
available on the first author’s webpage. For each pair of faces
of the same subject, the two sets of keypoints are cropped
and registered to a common frame of reference. The propor-
tion of points in the smallest set that have a counterpart in
the second set at a distance R is computed. The repeatability
using configuration 1 and 2 is given in figure 8 and compared
with the repeatability of the hand-placed landmarks. It can
be seen that at 10mm the proportion of repeatable points
is around 75% (configuration 2) on average. An aspect of
our system is that it cannot discriminate between shapes of
interest that are linked to identity from the ones linked to
change in expression or other variations. We think that the
best way to use those detected points will be to label them
(for example with [2]) to get a more sparse and consistent
set of points.



Table I
WEIGHTS CORRESPONDING TO THE FIRST PRINCIPAL DIRECTION OF THE LDA FOR EACH OF THE 14 LANDMARKS DESCRIBED IN FIGURE 3 (0 TO 13).

DARK BLUE CELL REPRESENT THE HIGHEST CONTRIBUTION PER COLUMN. RED CELLS REPRESENT NEGATIVE CONTRIBUTIONS.

Size Desc. 00 01 02 03 04 05 06 07 08 09 10 11 12 13 All

2.5 mm SIH .03 .08 .00 .10 .02 .04 .00 .04 .00 .03 .03 .01 .03 .11 .04
SH .00 .02 .00 .02 .02 .19 .00 .01 .02 .00 .01 .00 .00 .05 .01

5 mm SIH .04 .02 .04 .05 .04 .02 .04 .00 .09 .00 .00 .28 .44 .29 .09
SH .01 .00 .00 .01 .01 .00 .02 .00 .00 .04 .02 .01 .01 .37 .03

7.5 mm SIH .02 .03 .01 .02 .01 .00 .04 .01 .11 .02 .00 .40 .00 .09 .04
SH .05 .00 .01 .01 .04 .15 .01 .01 .00 .01 .00 .00 .07 .23 .04

10 mm SIH .02 .00 .08 .00 .00 .15 .02 .04 .05 .05 .05 .05 .20 .08 .04
SH .08 .01 .01 .00 .05 .12 .03 .03 .00 .01 .00 .00 .00 .00 .00

5 mm

k1 .00 .02 .02 .04 .00 .00 .05 .05 .01 .06 .10 .03 .09 .00 .02
k2 .02 .04 .01 .01 .01 .00 .03 .03 .01 .02 .02 .01 .03 .00 .00
H .07 .02 .02 .00 .07 .00 .05 .00 .06 .01 .00 .05 .04 .01 .01
K .03 .06 .02 .05 .03 .00 .02 .02 .03 .03 .01 .01 .00 .00 .01
SI .01 .03 .01 .04 .01 .01 .02 .02 .01 .00 .04 .00 .00 .01 .00
LC .04 .00 .02 .00 .04 .00 .01 .06 .01 .09 .04 .01 .01 .00 .02
Vol .04 .00 .00 .01 .02 .00 .25 .04 .00 .02 .02 .00 .04 .00 .03

DLP .10 .10 .01 .02 .12 .00 .03 .03 .02 .06 .07 .11 .14 .00 .06

15 mm

k1 .01 .07 .05 .06 .00 .14 .00 .02 .04 .06 .06 .00 .17 .04 .02
k2 .03 .39 .03 .14 .05 .00 .17 .22 .07 .07 .07 .02 .07 .01 .06
H .04 .00 .04 .02 .06 .01 .05 .22 .04 .02 .00 .00 .01 .04 .02
K .05 .07 .17 .04 .04 .00 .03 .02 .23 .07 .06 .01 .18 .00 .01
SI .08 .11 .08 .28 .08 .00 .06 .06 .00 .51 .57 .03 .03 .00 .13
LC .02 .03 .03 .02 .04 .00 .00 .03 .03 .04 .04 .00 .08 .00 .01
Vol .13 .01 .02 .12 .12 .16 .07 .11 .01 .11 .09 .03 .09 .02 .08

DLP .08 .00 .00 .04 .08 .00 .06 .13 .00 .08 .07 .00 .14 .00 .01

30 mm

k1 .00 .01 .02 .03 .01 .01 .00 .02 .04 .00 .01 .03 .05 .18 .01
k2 .00 .02 .04 .08 .01 .01 .02 .02 .00 .03 .05 .05 .12 .01 .00
H .15 .09 .01 .10 .12 .00 .09 .11 .04 .05 .04 .05 .12 .08 .02
K .12 .00 .00 .01 .17 .03 .00 .01 .02 .02 .00 .02 .01 .20 .01
SI .17 .05 .08 .00 .15 .00 .05 .08 .02 .03 .02 .01 .04 .06 .04
LC .04 .01 .05 .00 .03 .01 .03 .02 .04 .06 .09 .08 .07 .00 .01
Vol .10 .03 .01 .08 .11 .00 .05 .05 .06 .06 .04 .01 .06 .02 .04

DLP .07 .41 .03 .33 .11 .05 .03 .05 .02 .04 .00 .01 .08 .01 .05

45 mm

k1 .05 .04 .01 .06 .05 .01 .00 .02 .00 .05 .05 .04 .01 .01 .00
k2 .02 .00 .00 .02 .02 .00 .07 .05 .05 .01 .03 .08 .01 .01 .01
H .02 .01 .00 .03 .02 .01 .01 .02 .04 .12 .10 .01 .19 .00 .03
K .00 .00 .00 .00 .01 .00 .05 .02 .03 .01 .01 .06 .08 .01 .01
SI .04 .03 .04 .06 .02 .00 .01 .05 .00 .00 .00 .00 .02 .00 .02
LC .01 .03 .02 .03 .00 .00 .16 .09 .00 .15 .09 .10 .18 .02 .06
Vol .00 .01 .00 .01 .00 .00 .04 .06 .03 .02 .02 .03 .05 .01 .02

DLP .03 .14 .03 .02 .06 .24 .01 .01 .03 .15 .13 .03 .04 .00 .00

60 mm

k1 .08 .02 .04 .00 .08 .00 .05 .04 .00 .00 .00 .00 .04 .02 .01
k2 .00 .15 .01 .09 .00 .00 .04 .07 .02 .03 .03 .01 .03 .04 .03
H .01 .03 .00 .00 .02 .00 .00 .02 .00 .02 .04 .00 .04 .00 .00
K .01 .05 .01 .04 .01 .00 .03 .00 .01 .00 .03 .00 .04 .02 .00
SI .09 .02 .04 .06 .08 .00 .01 .00 .02 .00 .00 .02 .05 .04 .01
LC .02 .02 .03 .01 .03 .00 .04 .07 .02 .03 .05 .02 .03 .04 .01
Vol .06 .00 .00 .00 .05 .02 .01 .03 .03 .05 .07 .01 .07 .00 .03

DLP .02 .03 .01 .02 .04 .33 .03 .00 .00 .05 .07 .01 .11 .01 .00

Table II
SUMMED VALUE PER NEIGHBOURHOOD SIZE OF THE WEIGHTS RETURNED BY LDA (SEE TABLE I). THE DESCRIPTIVENESS OF THE DESCRIPTORS

PEAKS AROUND 15 MM FOR THE SELECTED LANDMARKS.

Size 00 01 02 03 04 05 06 07 08 09 10 11 12 13 All
5mm .01 .10 .10 .07 .01 .01 .21 .01 .04 .10 .12 .07 .07 .02 .01
15mm .28 .41 .45 .54 .27 .33 .34 .51 .45 .53 .60 .09 .08 .03 .34
30mm .22 .38 .18 .20 .24 .12 .18 .14 .21 .01 .06 .08 .21 .12 .16
45mm .21 .01 .05 .10 .22 .26 .07 .12 .00 .15 .15 .10 .20 .01 .08
60mm .03 .14 .00 .01 .04 .35 .01 .07 .08 .04 .06 .04 .01 .05 .06



Table III
SUMMED VALUE PER DESCRIPTOR OF THE WEIGHTS RETURNED BY LDA (SEE TABLE I).

00 01 02 03 04 05 06 07 08 09 10 11 12 13 All
DLP .07 .19 .00 .35 .13 .14 .18 .24 .04 .00 .08 .08 .27 .02 .02

H .11 .05 .08 .11 .12 .00 .10 .38 .10 .18 .09 .01 .39 .14 .01
K .03 .17 .20 .12 .12 .04 .02 .05 .21 .08 .10 .07 .04 .19 .01

SH .15 .01 .04 .03 .12 .20 .03 .03 .02 .04 .01 .01 .06 .55 .09
SI .23 .14 .18 .23 .19 .02 .16 .17 .03 .48 .60 .06 .09 .10 .19

SIH .07 .15 .14 .18 .09 .23 .12 .08 .26 .10 .09 .73 .67 .22 .22
k1 .15 .03 .16 .01 .16 .14 .11 .07 .05 .06 .10 .05 .18 .12 .07
k2 .03 .56 .00 .14 .05 .00 .08 .25 .03 .00 .02 .03 .03 .01 .09
LC .15 .11 .15 .06 .16 .00 .13 .13 .08 .10 .05 .14 .32 .02 .10
Vol .35 .07 .02 .20 .32 .19 .44 .31 .13 .29 .27 .08 .32 .01 .21
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Figure 6. Matching percentage per landmark (0-13) with an increasing matching acceptance radius on the FRGC v2 test set. (a) using all descriptors
(Configuration 1), (b) using a subset of descriptors (Configuration 2).
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Figure 7. Number of matching landmark per file on the test part of the FRGC v2 database. (a) using all descriptors (Configuration 1), (b) using a subset
of descriptors (Configuration 2).

VI. CONCLUSION

A simple method has been proposed to deal with the
problem of combining descriptors to detect unlabelled points
of interest (keypoints) on 3D objects. This method gives
interesting results on 3D faces, but presents some limitations
in its current state, like the fact that only linear combinations
are used for the descriptors or that it is computationally
expensive if too many descriptors are considered. However,
a good point of our method is that it doesn’t assume that
the detected points should have an extremal value over a
descriptor map. Instead, it assumes that the matching score

of this descriptor against a learnt distribution should be
maximal. Furthermore, this technique is very generic, as the
set of descriptors, the sizes of the neighbourhoods and the
dictionary of local shapes can be changed easily. Our method
could therefore be used on other types of 3D objects without
any modification.

In this paper, we have also studied the behaviour of
different local descriptors competing with each other at
different scales. It provides us better indications of what
descriptor should be used with which parameters to detect
each of the 14 common landmarks used as shapes of interest



in our experiments (see table I). Further work will look at
computing correspondences between the detected keypoints
both with and without using label retrieval.
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