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o Keypoints detection (NOT LANDMARKS)
o Similar to any of 14 learnt features
(Dictionary of local shapes)
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Weak features often discarded
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Almost no work on combining more than 2 descriptors
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Little literature that examine multiple descriptors over
multiple scales

Most people focused on landmarking, without giving
the intermediate results on candidate detection
(keypoints)
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What o Sparse selection (max 1%)
o Reapeatable (same subject registration)

How o ~75% (at 10mm)

o Close to human hand-placed landmarks
Examples o average All: ~85% (at 10 mm)
Conclusion o average Nose: ~99% (at 10 mm)

o average Eyes: ~90% (at 10 mm)
o High proportion of the local shapes retreived
o ~11.88/14 (at 10 mm)
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o Good points:

o Detects "weak” features

o No single-point-of-failure design
o Limitations:

o Can be time consuming
article: 7s, now: 0.5s (8 desc.)
o Linear combination of scores

o Future Work:

o Non linear methods (boosting, kernel methods)

o Structural matching to deduce correspondences

o Comparison with a new clustering technique for
keypoint detection
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