
Automatic Keypoint Detection on 3D Faces
Using a Dictionary of Local Shapes

Clement Creusot, Nick Pears, Jim Austin

Advanced Computer Architecture group
Department of Computer science

3DIMPVT, Hangzhou, China, May 2011



What

Why

How

Results

Conclusion

Aim

Keypoints detection (NOT LANDMARKS)

Similar to any of 14 learnt features
(Dictionary of local shapes)
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Gap in Research

Most literature:

3 points max or single-point-of-failure design

Weak features often discarded

Almost no work on combining more than 2 descriptors

Little literature that examine multiple descriptors over
multiple scales

Most people focused on landmarking, without giving
the intermediate results on candidate detection
(keypoints)
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Sparse selection (max 1%)

Reapeatable (same subject registration)
∼75% (at 10mm)

Close to human hand-placed landmarks
average All: ∼85% (at 10mm)
average Nose: ∼99% (at 10mm)
average Eyes: ∼90% (at 10mm)

High proportion of the local shapes retreived
∼11.88/14 (at 10mm)
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Good points:

Detects ”weak” features
No single-point-of-failure design

Limitations:

Can be time consuming
article: 7s, now: 0.5s (8 desc.)

Linear combination of scores

Future Work:

Non linear methods (boosting, kernel methods)
Structural matching to deduce correspondences
Comparison with a new clustering technique for
keypoint detection

Thank You For Listening!
http://www.cs.york.ac.uk/~creusot
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